Next Article in Journal
Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation
Next Article in Special Issue
Microfluidic Devices for Blood Fractionation
Previous Article in Journal
Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures
Micromachines 2011, 2(2), 258-273; doi:10.3390/mi2020258
Article

Optimization of Liquid DiElectroPhoresis (LDEP) Digital Microfluidic Transduction for Biomedical Applications

1,* , 1
, 2
, 2
, 2
, 1
, 2
 and 3
Received: 5 April 2011; in revised form: 22 May 2011 / Accepted: 25 May 2011 / Published: 3 June 2011
(This article belongs to the Special Issue Biomedical Microdevices)
View Full-Text   |   Download PDF [823 KB, uploaded 3 June 2011]   |   Browse Figures
Abstract: Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC) systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD) and Liquid DiElectroPhoresis (LDEP) are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz). With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System) or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.
Keywords: liquid dielectrophoresis; dielectric high-k material; electromechanical force; open-microfluidic and parallel-plate microfluidic liquid dielectrophoresis; dielectric high-k material; electromechanical force; open-microfluidic and parallel-plate microfluidic
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Renaudot, R.; Agache, V.; Daunay, B.; Lambert, P.; Kumemura, M.; Fouillet, Y.; Collard, D.; Fujita, H. Optimization of Liquid DiElectroPhoresis (LDEP) Digital Microfluidic Transduction for Biomedical Applications. Micromachines 2011, 2, 258-273.

AMA Style

Renaudot R, Agache V, Daunay B, Lambert P, Kumemura M, Fouillet Y, Collard D, Fujita H. Optimization of Liquid DiElectroPhoresis (LDEP) Digital Microfluidic Transduction for Biomedical Applications. Micromachines. 2011; 2(2):258-273.

Chicago/Turabian Style

Renaudot, Raphaël; Agache, Vincent; Daunay, Bruno; Lambert, Pierre; Kumemura, Momoko; Fouillet, Yves; Collard, Dominique; Fujita, Hiroyuki. 2011. "Optimization of Liquid DiElectroPhoresis (LDEP) Digital Microfluidic Transduction for Biomedical Applications." Micromachines 2, no. 2: 258-273.


Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert