Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Samples and Chemicals
2.2. Rice Germination
2.3. Animals and Diet
2.4. Determination of Glucose Profile and Plasma Adipokine Levels
2.5. Determination of Hepatic Glucose-Regulating Enzymes Activities
2.6. Measurement of Bone Metabolism Biochemical Markers
2.7. Statistical Analysis
3. Results
3.1. Body and Organ Weights
3.2. Glucose Profile
3.3. Plasma Adipokine Level
3.4. Hepatic Glucose-Regulating Enzymes Activities
3.5. Biochemical Markers of Bone Metabolism
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, F.; Yang, N.; Toure, A.; Jin, Z.; Xu, X. Germinated brown rice and its role in human health. Crit. Rev. Food Sci. Nutr. 2013, 53, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Khan, M.K. Germinated brown rice as a value added rice product: A review. J. Food Sci. Technol. 2011, 48, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Moongngarm, A.; Saetung, N. Comparison of chemical compositions andbioactive compounds of germinated rough rice and brown rice. Food Chem. 2010, 122, 782–788. [Google Scholar] [CrossRef]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.T.; Huang, S.H.; Chen, Y.T.; Su, C.H. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars. J. Agric. Food Chem. 2013, 61, 12604–12611. [Google Scholar] [CrossRef] [PubMed]
- Mohd, E.N.; Abdul, K.K.K.; Amom, Z.; Azlan, A. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chem. 2013, 141, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Rico, C.W.; Bae, H.J.; Lee, S.C. Antioxidant capacity of newly developed pigmented rice cultivars in Korea. Cereal Chem. 2013, 90, 497–501. [Google Scholar] [CrossRef]
- Min, B.; McClung, A.M.; Chen, M.H. Phytochemicals and antioxidant capacities in rice brans of different color. J. Food Sci. 2011, 76, C117–C126. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Xu, X.R.; Zhang, Y.; Li, D.; Gan, R.Y.; Li, H.B. Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. Nutr. 2013, 53, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Frank, T.; Reichardt, B.; Shu, Q.; Engel, K.H. Metabolite profiling of colored rice (Oryza sativa L.) grains. J. Cereal Sci. 2012, 55, 112–119. [Google Scholar] [CrossRef]
- Ling, W.H.; Cheng, Q.X.; Ma, J.; Wang, T. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits. J. Nutr. 2001, 131, 1421–1426. [Google Scholar] [PubMed]
- Bae, H.J.; Rico, C.W.; Ryu, S.N.; Kang, M.Y. Hypolipidemic, hypoglycemic and antioxidantive effects of a new pigmented rice cultivar “Superjami” in high fat-fed mice. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 685–691. [Google Scholar] [CrossRef]
- Shimoda, H.; Aitani, M.; Tanaka, J.; Hitoe, S. Purple rice extract exhibits preventive activities on experimental diabetes models and human subjects. J. Rice Res. 2015, 3, 137. [Google Scholar] [CrossRef]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Akahoshi, M.; Soda, M.; Nakashima, E.; Shimaoka, K.; Seto, S.; Yano, K. Effects of menopause on trends of serum cholesterol, blood pressure, and body mass index. Circulation 1996, 94, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, M.; Kasayama, S.; Morita, S.; Asanuma, N.; Saito, H.; Mukai, M.; Koga, M. Menopause, but not age, is an independent risk factor for fasting plasma glucose levels in nondiabetic women. Menopause 2007, 14, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [CrossRef]
- Brinton, R.D. Minireview: Translational animal models of human menopause: Challenges and emerging opportunities. Endocrinology 2012, 153, 3571–3578. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.I.; Lo, L.M.P.; Kang, M.Y. Effect of germination on the antioxidant capacity of pigmented rice (Oryza sativa L. cv. Superjami and Superhongmi). Food Sci. Technol. Res. 2016, 22, 387–394. [Google Scholar] [CrossRef]
- Lo, L.M.P.; Kang, M.Y.; Yi, S.J.; Chung, S.I. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague-Dawley rats. Food Nutr. Res. 2016, 60. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, H.; Yang, N.; Wang, J.; Duan, X.; Jin, Z.; Xu, X. Effect on germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. J. Cereal Sci. 2013, 58, 263–271. [Google Scholar] [CrossRef]
- Chakuton, K.; Puangpronpitag, D.; Nakornriab, M. Phytochemical Content and Antioxidant Activity of Colored and Non-colored Thai Rice Cultivars. Asian J. Plant Sci. 2012, 11, 285–293. [Google Scholar]
- Islam, M.A.; Becerra, J.X. Analysis of chemical components involved in germination process of rice variety Jhapra. J. Sci. Res. 2012, 4, 251–262. [Google Scholar] [CrossRef]
- Jeng, T.L.; Shih, Y.J.; Ho, P.T.; Lai, C.C.; Lin, Y.W. γ -Oryzanol, tocol and mineral compositions in different grain fractions of giant embryo rice mutants. J. Sci. Food Agric. 2012, 92, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Kwak, J.; Baik, J.Y.; Yoon, M.R.; Lee, J.S.; Yoon, S.W.; Kim, I.H. Changes in lipid substances in rice during grain development. Phytochemistry 2015, 116, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Konwachara, T.; Ahromrit, A. Effect of cooking on functional properties of germinated black glutinous rice (KKU-URL012). Songklanakarin J. Sci. Technol. 2014, 36, 283–290. [Google Scholar]
- Association of Official Analytical Chemists Inc. AOAC Official Methods of Analysis; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2003. [Google Scholar]
- American Institute of Nutrition. Report of ad hoc committee on standards for nutritional studies. J. Nutr. 1977, 107, 1340–1347. [Google Scholar]
- Seifter, S.; Dayton, S.; Navic, B.; Muntwyler, E. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 1950, 25, 191–200. [Google Scholar] [PubMed]
- Vogeser, M.; Konig, D.; Frey, I.; Predel, H.G.; Parhofer, K.G.; Berg, A. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons. Clin. Biochem. 2007, 40, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Hulcher, F.H.; Oleson, W.H. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 1973, 14, 625–631. [Google Scholar] [PubMed]
- Bradford, M.M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bentle, L.A.; Lardy, H.A. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J. Biol. Chem. 1976, 251, 2916–2921. [Google Scholar] [PubMed]
- Davidson, A.L.; Arion, W.J. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Arch. Biochem. Biophys. 1987, 253, 156–167. [Google Scholar] [CrossRef]
- Alegre, M.; Ciudad, C.J.; Fillat, C.; Guinovart, J.J. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem. 1988, 173, 185–189. [Google Scholar] [CrossRef]
- Seidlova-Wuttke, D.; Nguyen, B.T.; Wuttke, W. Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-β-deleted mice. Comp. Med. 2012, 62, 8–13. [Google Scholar] [PubMed]
- Kim, S.M.; Rico, C.W.; Lee, S.C.; Kang, M.Y. Modulatory effect of rice bran and phytic acid on glucose metabolism in high fat-fed C57BL/6N mice. J. Clin. Biochem. Nutr. 2010, 47, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Influence of oryzanol and ferulic acid on the lipid metabolism and antioxidative status in high fat-fed mice. J. Clin. Biochem. Nutr. 2010, 46, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with high fat diet. J. Food Sci. 2011, 76, H7–H10. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Chauhan, B. Policosanol: Natural wax component with potent health benefits. Int. J. Med. Pharm. Sci. 2015, 5, 15–24. [Google Scholar]
- Lee, J.Y.; Choi, H.Y.; Kang, Y.R.; Chang, H.B.; Chun, H.S.; Lee, M.S.; Kwon, Y.I. Effects of long-term supplementation of policosanol on blood cholesterol/glucose levels and 3-hydroxy-3methylglutaryl coenzyme a reductase activity in a rat model fed high cholesterol diets. Food Sci. Biotechnol. 2016, 25, 899–904. [Google Scholar] [CrossRef]
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty lover disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed]
- Silha, J.V.; Weiler, H.A.; Murphy, L.J. Plasma adipokines and body composition in response to modest dietary manipulations in the mouse. Obesity 2006, 14, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Darabi, H.; Raeisi, A.; Kalantarhormozi, M.R.; Ostovar, A.; Assadi, M.; Asadipooya, K.; Vahdat, K.; Dobaradaran, S.; Nabipour, I. Adiponectin as protective factor against progression toward type 2 diabetes mellitus in postmenopausal women. Medicine 2015, 94, e1347. [Google Scholar] [CrossRef] [PubMed]
- She, P.; Shiota, M.; Shelton, K.D.; Chalkley, R.; Postic, C.; Magnuson, M.A. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol. Cell. Biol. 2000, 20, 6508–6517. [Google Scholar] [CrossRef] [PubMed]
- Schaftingen, E.V.; Gerin, I. The glucose-6-phosphatase system. Biochem. J. 2002, 362, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Coope, G.J.; Atkinson, A.M.; Allott, C.; McKerrecher, D.; Johnstone, C.; Pike, K.G. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Br. J. Pharmacol. 2003, 149, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.P.; Wagstaff, A.J. Spotlight on estradiol and norgestimate as hormone therapy in postmenopausal women. Treat. Endocrinol. 2002, 1, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, B. Use of low-dosage 17 beta-estradiol for the prevention of osteoporosis. Clin. Ther. 1993, 15, 950–962. [Google Scholar] [PubMed]
- Vaananen, H.K.; Harkonen, P.L. Estrogen and bone metabolism. Maturitas 1996, 23, S65–S69. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover part II: Clinical applications in the management of osteoporosis. Clin. Biochem. Rev. 2006, 27, 123–138. [Google Scholar] [PubMed]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Franca, N.A.G.; Camargo, M.B.; Lazaretti-Castro, M.; Martini, L.A. Antioxidant intake and bone status in a cross-sectional study of Brazilian women with osteoporosis. Nutr. Health 2013, 22, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Luke, D.A.; Shuid, A.N.; Mohamed, N.; Soelaiman, I.N. Tocotrienol supplementation in postmenopausal osteoporosis: Evidence from a laboratory study. Clinics 2013, 68, 1338–1343. [Google Scholar] [CrossRef]
- Altindag, O.; Erel, O.; Soran, N.; Celik, H.; Selek, S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol. Int. 2008, 28, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Sendur, O.F.; Turan, Y.; Tastaban, E.; Serter, M. Antioxidant status in patients with osteoporosis: A controlled study. Jt. Bone Spine 2009, 76, 514–518. [Google Scholar] [CrossRef] [PubMed]
Bioactive Compound | Non-Germinated | Germinated |
---|---|---|
γ-Oryzanol (mg/100 g rice) | 33.21 ± 2.66 | 51.96 ± 1.99 1,* |
GABA (mg/100 g rice) | 98.54 ± 3.96 | 1102.02 ± 11.63 * |
Phytic acid (mg/100 g rice) | 2.01 ± 0.09 | 4.02 ± 0.14 * |
Tocols (μg/100 g rice) | 133.69 ± 8.62 | 256.79 ± 6.98 * |
Policosanol (mg/100 g rice) | 21.69 ± 1.02 | 26.51 ± 1.24 * |
Proximate composition (% dry basis) | ||
Carbohydrates | 76.58 ± 0.91 * | 53.92 ± 0.98 |
Crude protein | 7.11 ± 0.12 * | 5.71 ± 0.41 |
Crude fat | 2.31 ± 0.19 | 3.58 ± 0.17 * |
Crude ash | 1.34 ± 0.04 * | 1.11 ± 0.02 |
Moisture | 12.66 ± 0.32 | 35.68 ± 0.61 * |
NC 1 | SH | GSH | |
---|---|---|---|
Casein | 14.0 | 12.4 | 12.2 |
Sucrose | 10.0 | 10.0 | 10.0 |
Dextrose | 15.5 | 15.5 | 15.5 |
Corn starch | 46.6 | 28.7 | 29.1 |
Cellulose | 5.00 | 5.00 | 5.00 |
Soybean oil | 4.00 | 3.50 | 3.24 |
Mineral mix | 3.50 | 3.50 | 3.50 |
Vitamin mix | 1.00 | 1.00 | 1.00 |
l-Cystine | 0.18 | 0.18 | 0.18 |
Choline bitartrate | 0.25 | 0.25 | 0.25 |
Non-germinated rice | - | 20.0 | - |
Germinated rice | - | - | 20.0 |
Total | 100 | 100 | 100 |
Kcal | 380 | 380 | 380 |
Parameter | NC | SH | GSH |
---|---|---|---|
Initial weight (g) | 229.24 ± 1.25 | 228.32 ± 1.18 | 228.14 ± 0.79 |
Final weight (g) | 402.65 ± 5.33 c | 388.69 ± 4.92 b | 374.25 ± 5.41 a |
Weight gain (g) | 174.68 ± 5.63 c | 160.24 ± 4.72 b | 148.32 ± 3.30 a |
Feed intake (g/week) | 181.58 ± 4.32 c | 162.25 ± 3.20 b | 149.44 ± 3.41 a |
Feed efficiency ratio | 0.16 ± 0.00 c | 0.14 ± 0.00 b | 0.12 ± 0.00 a |
White adipose tissue weight (g) | 10.26 ± 0.19 c | 9.04 ± 0.19 b | 8.56 ± 0.12 a |
Organ weight (g) | |||
Liver | 2.88 ± 0.01 c | 2.57 ± 0.02 b | 2.50 ± 0.01 a |
Heart | 0.26± 0.01 b | 0.23 ± 0.01 a | 0.22 ± 0.01 a |
Kidney | 0.40 ± 0.01 | 0.39 ± 0.02 | 0.39 ± 0.04 |
Parameter | NC | SH | GSH |
---|---|---|---|
Initial blood glucose (mmol/L) | 4.98 ± 0.02 | 5.01 ± 0.02 | 5.08 ± 0.02 |
Final blood glucose (mmol/L) | 6.98 ± 0.05 c | 5.61 ± 0.03 b | 5.04 ± 0.03 a |
Plasma insulin (mU/L) | 4.93 ± 0.03 c | 3.91 ± 0.05 b | 3.39 ± 0.01 a |
Hepatic glycogen (mg/g liver) | 94.68 ± 2.26 a | 149.25 ± 2.78 b | 152.88 ± 3.07 b |
HOMA-IR index | 1.49 ± 0.00 c | 0.97 ± 0.02 b | 0.78 ± 0.00 a |
Plasma adipokine | |||
Adiponectin (ng/mL) | 0.26 ± 0.03 a | 0.48 ± 0.03 b | 0.71 ± 0.06 c |
Leptin (ng/mL) | 3.76 ± 0.27 | 3.32 ± 0.33 | 3.36 ± 0.26 |
Resistin (ng/mL) | 32.55 ± 0.12 c | 22.88 ± 1.43 b | 18.25 ± 1.05 a |
TNF-α (µg/mL) | 9.58 ± 0.81 c | 7.25 ± 0.58 b | 4.51 ± 0.12 a |
Hepatic glucose-regulating enzymes (µmol/min/mg protein) | |||
PEPCK | 3.74 ± 0.87 c | 2.98 ± 0.52 b | 1.18 ± 0.41 a |
GK | 1.62 ± 0.13 a | 2.89 ± 0.19 b | 2.98 ± 0.22 b |
G6pase | 76.95 ± 1.32 c | 68.33 ± 1.47 b | 47.58 ± 1.51 a |
GK/G6pase ratio | 0.02 ± 0.00 a | 0.04 ± 0.00 b | 0.06 ± 0.00 c |
NC | SH | GSH | |
---|---|---|---|
17-β-estradiol (ng/mL) | 0.47 ± 0.03 a | 0.52 ± 0.02 a | 0.87 ± 0.05 b |
Intact PTH (pg/mL) | 22.58 ± 0.63 b | 21.22 ± 1.02 b | 18.05 ± 0.57 a |
Calcium (mg/dL) | 9.65 ± 0.53 | 10.68 ± 0.43 | 10.58 ± 0.58 |
Osteocalcin (ng/mL) | 13.55 ± 1.23 | 13.16 ± 0.73 | 12.57 ± 0.54 |
Alkaline phosphatase (µg/L) | <0.50 ± 0.00 | <0.50 ± 0.00 | <0.50 ± 0.00 |
NTx-1 (nmol/L) | 181.58 ± 2.37 c | 145.25 ± 1.23 b | 121.44 ± 3.45 a |
CTx-1 (nmol/mL) | 23.71 ± 0.85 c | 18.69 ± 0.65 b | 13.29 ± 1.58 a |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.I.; Ryu, S.N.; Kang, M.Y. Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients 2016, 8, 658. https://doi.org/10.3390/nu8100658
Chung SI, Ryu SN, Kang MY. Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients. 2016; 8(10):658. https://doi.org/10.3390/nu8100658
Chicago/Turabian StyleChung, Soo Im, Su Noh Ryu, and Mi Young Kang. 2016. "Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats" Nutrients 8, no. 10: 658. https://doi.org/10.3390/nu8100658
APA StyleChung, S. I., Ryu, S. N., & Kang, M. Y. (2016). Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi) Improves Glucose and Bone Metabolisms in Ovariectomized Rats. Nutrients, 8(10), 658. https://doi.org/10.3390/nu8100658