Next Article in Journal
Rice Pricing during Organic Conversion of the Honghe Hani Rice Terrace System in China
Previous Article in Journal
How Business Idea Fit Affects Sustainability and Creates Opportunities for Value Co-Creation in Nascent Firms
Previous Article in Special Issue
Temperature Estimation for Photovoltaic Array Using an Adaptive Neuro Fuzzy Inference System
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessReview
Sustainability 2018, 10(1), 191; doi:10.3390/su10010191

A Comprehensive Review of Thermal Energy Storage

Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania
Author to whom correspondence should be addressed.
Received: 7 December 2017 / Revised: 8 January 2018 / Accepted: 10 January 2018 / Published: 14 January 2018
(This article belongs to the Special Issue Solar Photovoltaic Electricity)
View Full-Text   |   Download PDF [6719 KB, uploaded 14 January 2018]   |  


Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. View Full-Text
Keywords: storage system; phase-change materials; chemical storage; cold storage; performance storage system; phase-change materials; chemical storage; cold storage; performance

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top