Next Article in Journal
Hemostatic Efficiency and Wound Healing Properties of Natural Zeolite Granules in a Lethal Rabbit Model of Complex Groin Injury
Next Article in Special Issue
Nanomagnetic Gene Transfection for Non-Viral Gene Delivery in NIH 3T3 Mouse Embryonic Fibroblasts
Previous Article in Journal
Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)
Previous Article in Special Issue
A Novel Active Targeting Preparation, Vinorelbine Tartrate (VLBT) Encapsulated by Folate-Conjugated Bovine Serum Albumin (BSA) Nanoparticles: Preparation, Characterization and in Vitro Release Study
Materials 2012, 5(12), 2573-2585; doi:10.3390/ma5122573
Article

Preparation and Mechanical Properties of Photo-Crosslinked Fish Gelatin/Imogolite Nanofiber Composite Hydrogel

* ,
,
,
,
 and
Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
* Author to whom correspondence should be addressed.
Received: 14 September 2012 / Revised: 7 November 2012 / Accepted: 22 November 2012 / Published: 29 November 2012
(This article belongs to the Special Issue Advances in Nanoscale Biomaterials)
View Full-Text   |   Download PDF [925 KB, uploaded 29 November 2012]   |  

Abstract

Fish gelatin (FG) extracted from sea bream scales was reacted with glycidyl methacrylate (GMA), and the product (FG-GMA) was used for photopolymerization using a radical photoinitiator in the presence or absence of imogolite nanofibers in the aqueous solution. The synthesis of FG-GMA was confirmed by 1H NMR spectroscopy, and photopolymerization of FG-GMA was achieved successfully by irradiation with ultraviolet (UV) light for 3 min to yield translucent composite hydrogels. The concentration of FG-GMA varied from 10% to 30% without imogolite, and that of imogolite varied from 0% to 2.0%. A microtomed gel sample was observed with a transmission electron microscope (TEM), and imogolite nanofibers were found to be dispersed finely in the gelatin matrix. Scanning electron microscope (SEM) observation of the lyophilized gel revealed that it had a porous morphology. Mechanical properties of hydrogels were measured by compression tests using a mechanical tester, and viscoelastic properties were measured using a rheometer. The mechanical strength and storage modulus of the hydrogel increased with an increase of imogolite.
Keywords: gelatin; fish scale; imogolite; nanofibers; hydrogel; photopolymerization; composite gel gelatin; fish scale; imogolite; nanofibers; hydrogel; photopolymerization; composite gel
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
SciFeed

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Teramoto, N.; Hayashi, A.; Yamanaka, K.; Sakiyama, A.; Nakano, A.; Shibata, M. Preparation and Mechanical Properties of Photo-Crosslinked Fish Gelatin/Imogolite Nanofiber Composite Hydrogel. Materials 2012, 5, 2573-2585.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert