Next Article in Journal
How Can We Achieve Healthy Aging?
Previous Article in Journal
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2017, 14(12), 1581; doi:10.3390/ijerph14121581

Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

National Exposure Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Durham, NC 27711, USA
*
Authors to whom correspondence should be addressed.
Received: 30 September 2017 / Revised: 23 November 2017 / Accepted: 11 December 2017 / Published: 15 December 2017
(This article belongs to the Section Global Health)
View Full-Text   |   Download PDF [943 KB, uploaded 19 December 2017]   |  

Abstract

An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with −0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate that traffic density parameters may be more specific indicators of near-road BC concentrations for health risk studies. HTD is the best index for reflecting near-road BC concentrations which are influenced mainly by the emissions of heavy-duty diesel engines. View Full-Text
Keywords: air pollutant; near-road; traffic density; vehicle emission; black carbon; exposure air pollutant; near-road; traffic density; vehicle emission; black carbon; exposure
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Liu, S.V.; Chen, F.-L.; Xue, J. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. Int. J. Environ. Res. Public Health 2017, 14, 1581.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top