Int. J. Environ. Res. Public Health 2014, 11(4), 3765-3786; doi:10.3390/ijerph110403765
Article

Spatial Relationship Quantification between Environmental, Socioeconomic and Health Data at Different Geographic Levels

1,2,* email, 1email, 1email, 3email, 4email and 1email
Received: 31 October 2013; in revised form: 18 March 2014 / Accepted: 19 March 2014 / Published: 3 April 2014
(This article belongs to the Special Issue Inequalities in Health)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Spatial health inequalities have often been analyzed in terms of socioeconomic and environmental factors. The present study aimed to evaluate spatial relationships between spatial data collected at different spatial scales. The approach was illustrated using health outcomes (mortality attributable to cancer) initially aggregated to the county level, district socioeconomic covariates, and exposure data modeled on a regular grid. Geographically weighted regression (GWR) was used to quantify spatial relationships. The strongest associations were found when low deprivation was associated with lower lip, oral cavity and pharynx cancer mortality and when low environmental pollution was associated with low pleural cancer mortality. However, applying this approach to other areas or to other causes of death or with other indicators requires continuous exploratory analysis to assess the role of the modifiable areal unit problem (MAUP) and downscaling the health data on the study of the relationship, which will allow decision-makers to develop interventions where they are most needed.
Keywords: health inequalities; socioeconomic status; exposure indicator; geographic level; MAUP; Geographically Weighted Regression
PDF Full-text Download PDF Full-Text [1696 KB, Updated Version, uploaded 19 June 2014 03:54 CEST]
The original version is still available [1597 KB, uploaded 19 June 2014 03:54 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Saib, M.-S.; Caudeville, J.; Carre, F.; Ganry, O.; Trugeon, A.; Cicolella, A. Spatial Relationship Quantification between Environmental, Socioeconomic and Health Data at Different Geographic Levels. Int. J. Environ. Res. Public Health 2014, 11, 3765-3786.

AMA Style

Saib M-S, Caudeville J, Carre F, Ganry O, Trugeon A, Cicolella A. Spatial Relationship Quantification between Environmental, Socioeconomic and Health Data at Different Geographic Levels. International Journal of Environmental Research and Public Health. 2014; 11(4):3765-3786.

Chicago/Turabian Style

Saib, Mahdi-Salim; Caudeville, Julien; Carre, Florence; Ganry, Olivier; Trugeon, Alain; Cicolella, Andre. 2014. "Spatial Relationship Quantification between Environmental, Socioeconomic and Health Data at Different Geographic Levels." Int. J. Environ. Res. Public Health 11, no. 4: 3765-3786.


Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert