Next Article in Journal
Marine Nutraceuticals: Prospects and Perspectives. By Se-Kwon Kim, CRC Press, 2013; 464 Pages. Price £108.00, ISBN 978-1-4665-1351-8
Next Article in Special Issue
Immunomodulatory Effect of Marine Cembrane-Type Diterpenoids on Dendritic Cells
Previous Article in Journal
Brominated Skeletal Components of the Marine Demosponges, Aplysina cavernicola and Ianthella basta: Analytical and Biochemical Investigations
Previous Article in Special Issue
Soft Coral-Derived Lemnalol Alleviates Monosodium Urate-Induced Gouty Arthritis in Rats by Inhibiting Leukocyte Infiltration and iNOS, COX-2 and c-Fos Protein Expression
Article Menu

Export Article

Open AccessArticle
Mar. Drugs 2013, 11(4), 1288-1299; doi:10.3390/md11041288

Differential in Gel Electrophoresis (DIGE) Comparative Proteomic Analysis of Macrophages Cell Cultures in Response to Perthamide C Treatment

1
Department of Pharmacy, University of Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy
2
Department of Pharmacy, University of Naples, Via D. Montesano 49, 80131 Naples, Italy
*
Authors to whom correspondence should be addressed.
Received: 28 February 2013 / Revised: 19 March 2013 / Accepted: 1 April 2013 / Published: 17 April 2013
(This article belongs to the Special Issue Marine Compounds and Inflammation)
View Full-Text   |   Download PDF [617 KB, uploaded 24 February 2015]   |  

Abstract

Secondary metabolites contained in marine organisms disclose diverse pharmacological activities, due to their intrinsic ability to recognize bio-macromolecules, which alter their expression and modulate their function. Thus, the identification of the cellular pathways affected by marine natural products is crucial to provide important functional information concerning their mechanism of action at the molecular level. Perthamide C, a marine sponge metabolite isolated from the polar extracts of Theonella swinhoei and endowed with a broad and interesting anti-inflammatory profile, was found in a previous study to specifically interact with heat shock protein-90 and glucose regulated protein-94, also disclosing the ability to reduce cisplatin-mediated apoptosis. In this paper, we evaluated the effect of this compound on the whole proteome of murine macrophages cells by two-dimensional DIGE proteomics. Thirty-three spots were found to be altered in expression by at least 1.6-fold and 29 proteins were identified by LC ESI-Q/TOF-MS. These proteins are involved in different processes, such as metabolism, structural stability, protein folding assistance and gene expression. Among them, perthamide C modulates the expression of several chaperones implicated in the folding of proteins correlated to apoptosis, such as Hsp90 and T-complexes, and in this context our data shed more light on the cellular effects and pathways altered by this marine cyclo-peptide.
Keywords: marine sponge peptides; differential in gel electrophoresis; chaperones; apoptosis; inflammation marine sponge peptides; differential in gel electrophoresis; chaperones; apoptosis; inflammation
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Supplementary materials

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Vilasi, A.; Monti, M.C.; Tosco, A.; Marino, S.D.; Margarucci, L.; Riccio, R.; Casapullo, A. Differential in Gel Electrophoresis (DIGE) Comparative Proteomic Analysis of Macrophages Cell Cultures in Response to Perthamide C Treatment. Mar. Drugs 2013, 11, 1288-1299.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top