Next Article in Journal
Non-Steroidal Anti-Inflammatory Drugs and Brain Inflammation: Effects on Microglial Functions
Next Article in Special Issue
Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer’s Disease
Previous Article in Journal
Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications
Previous Article in Special Issue
Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases
Article Menu

Export Article

Open AccessReview
Pharmaceuticals 2010, 3(6), 1936-1948; doi:10.3390/ph3061936

Unlocking the Door to Neuronal Woes in Alzheimer’s Disease: Aβ and Mitochondrial Permeability Transition Pore

1
Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
2
Department of Pathology & Cell Biology, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
3
The Taub institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
*
Author to whom correspondence should be addressed.
Received: 10 May 2010 / Revised: 10 June 2010 / Accepted: 14 June 2010 / Published: 14 June 2010
(This article belongs to the Special Issue Mitochondrial Drugs for Neurodegenerative Diseases)
View Full-Text   |   Download PDF [250 KB, uploaded 15 June 2010]   |  

Abstract

Mitochondrial dysfunction occurs early in the progression of Alzheimer’s disease. Amyloid-β peptide has deleterious effects on mitochondrial function and contributes to energy failure, respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species in Alzheimer’s disease. The mechanisms underlying amyloid-β induced mitochondrial stress remain unclear. Emerging evidence indicates that mitochondrial permeability transition pore is important for maintenance of mitochondrial and neuronal function in aging and neurodegenerative disease. Cyclophilin D (Cyp D) plays a central role in opening mitochondrial permeability transition pores, ultimately leading to cell death. Interaction of amyloid-β with cyclophilin D triggers or enhances the formation of mitochondrial permeability transition pores, consequently exacerbating mitochondrial and neuronal dysfunction, as shown by decreased mitochondrial membrane potential, impaired mitochondrial respiration function, and increased oxidative stress and cytochrome c release. Blockade of cyclophilin D by genetic abrogation or pharmacologic inhibition protects mitochondria and neurons from amyloid-β induced toxicity, suggesting that cyclophilin D dependent mitochondrial transition pores are a therapeutic target for Alzheimer’s disease. View Full-Text
Keywords: amyloid beta; mitochondrial permeability transition; cyclophilin D; therapy amyloid beta; mitochondrial permeability transition; cyclophilin D; therapy
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Du, H.; ShiDu Yan, S. Unlocking the Door to Neuronal Woes in Alzheimer’s Disease: Aβ and Mitochondrial Permeability Transition Pore. Pharmaceuticals 2010, 3, 1936-1948.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Pharmaceuticals EISSN 1424-8247 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top