Sensors 2009, 9(4), 2389-2414; doi:10.3390/s90402389
Article

Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

1,* email, 2email, 3email, 4email and 4email
Received: 21 February 2009; in revised form: 18 March 2009 / Accepted: 30 March 2009 / Published: 1 April 2009
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1µm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /o/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 x 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure.
Keywords: Finite element method; micromachined gyroscope; MEMS; thermal V shaped actuator; chevron-shaped actuator
PDF Full-text Download PDF Full-Text [1783 KB, uploaded 21 June 2014 02:43 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Shakoor, R.I.; Bazaz, S.A.; Kraft, M.; Lai, Y.; Ul Hassan, M.M. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs. Sensors 2009, 9, 2389-2414.

AMA Style

Shakoor RI, Bazaz SA, Kraft M, Lai Y, Ul Hassan MM. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs. Sensors. 2009; 9(4):2389-2414.

Chicago/Turabian Style

Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Ul Hassan, Muhammad Masood. 2009. "Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs." Sensors 9, no. 4: 2389-2414.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert