Sensors 2009, 9(2), 794-813; doi:10.3390/s90200794

Performance of Three Reflectance Calibration Methods for Airborne Hyperspectral Spectrometer Data

1,* email and 2email
Received: 30 December 2008; in revised form: 29 January 2009 / Accepted: 3 February 2009 / Published: 3 February 2009
(This article belongs to the Section Remote Sensors)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The “reflectance mode (RM)” method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The “linear-interpolation (LI)” method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and postflight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The “continuous panel (CP)” method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important advantage of the CP method is that the method can be used for long-duration flight campaigns (e.g., 1-2 hours). Although this study focused on reflectance calibration of airborne spectrometer data, the methods evaluated in this study and the results obtained are directly applicable to ground spectrometer measurements.
Keywords: Reflectance retrieval; hyperspectral reflectance; airborne remote sensing; sensor calibration; radiometry
PDF Full-text Download PDF Full-Text [3784 KB, uploaded 21 June 2014 02:41 CEST]

Export to BibTeX |

MDPI and ACS Style

Miura, T.; Huete, A.R. Performance of Three Reflectance Calibration Methods for Airborne Hyperspectral Spectrometer Data. Sensors 2009, 9, 794-813.

AMA Style

Miura T, Huete AR. Performance of Three Reflectance Calibration Methods for Airborne Hyperspectral Spectrometer Data. Sensors. 2009; 9(2):794-813.

Chicago/Turabian Style

Miura, Tomoaki; Huete, Alfredo R. 2009. "Performance of Three Reflectance Calibration Methods for Airborne Hyperspectral Spectrometer Data." Sensors 9, no. 2: 794-813.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert