Sensors 2008, 8(6), 3586-3600; doi:10.3390/s8063586

Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece

1email, 2,* email, 1email, 2email and 1email
Received: 3 December 2007; in revised form: 9 May 2008 / Accepted: 9 May 2008 / Published: 1 June 2008
(This article belongs to the Special Issue Remote Sensing of Natural Resources and the Environment)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Remote sensing can assist in improving the estimation of the geographical distribution of evapotranspiration, and consequently water demand in large cultivated areas for irrigation purposes and sustainable water resources management. In the direction of these objectives, the daily actual evapotranspiration was calculated in this study during the summer season of 2001 over the Thessaly plain in Greece, a wide irrigated area of great agricultural importance. Three different methods were adapted and applied: the remotesensing methods by Granger (2000) and Carlson and Buffum (1989) that use satellite data in conjunction with ground meteorological measurements and an adapted FAO (Food and Agriculture Organisation) Penman-Monteith method (Allen at al. 1998), which was selected to be the reference method. The satellite data were used in conjunction with ground data collected on the three closest meteorological stations. All three methods, exploit visible channels 1 and 2 and infrared channels 4 and 5 of NOAA-AVHRR (National Oceanic and Atmospheric Administration - Advanced Very High Resolution Radiometer) sensor images to calculate albedo and NDVI (Normalised Difference Vegetation Index), as well as surface temperatures. The FAO Penman-Monteith and the Granger method have used exclusively NOAA-15 satellite images to obtain mean surface temperatures. For the Carlson-Buffum method a combination of NOAA-14 and ΝΟΑΑ-15 satellite images was used, since the average rate of surface temperature rise during the morning was required. The resulting estimations show that both the Carlson-Buffum and Granger methods follow in general the variations of the reference FAO Penman-Monteith method. Both methods have potential for estimating the spatial distribution of evapotranspiration, whereby the degree of the relative agreement with the reference FAO Penman-Monteith method depends on the crop growth stage. In particular, the Carlson- Buffum method performed better during the first half of the crop development stage, while the Granger method performed better during the remaining of the development stage and the entire maturing stage. The parameter that influences the estimations significantly is the wind speed whose high values result in high underestimates of evapotranspiration. Thus, it should be studied further in future.
Keywords: Actual evapotranspiration; Remote sensing; NOAA-AVHRR images; FAO Penman-Monteith; Granger; Carlson-Buffum.
PDF Full-text Download PDF Full-Text [188 KB, uploaded 21 June 2014 01:56 CEST]

Export to BibTeX |

MDPI and ACS Style

Tsouni, A.; Kontoes, C.; Koutsoyiannis, D.; Elias, P.; Mamassis, N. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. Sensors 2008, 8, 3586-3600.

AMA Style

Tsouni A, Kontoes C, Koutsoyiannis D, Elias P, Mamassis N. Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece. Sensors. 2008; 8(6):3586-3600.

Chicago/Turabian Style

Tsouni, Alexia; Kontoes, Charalabos; Koutsoyiannis, Demetris; Elias, Panagiotis; Mamassis, Nikos. 2008. "Estimation of Actual Evapotranspiration by Remote Sensing: Application in Thessaly Plain, Greece." Sensors 8, no. 6: 3586-3600.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert