Sensors 2007, 7(12), 3428-3441; doi:10.3390/s7123428
Article

Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments

1,* email, 2, 1 and 3
Received: 5 November 2007; Accepted: 17 December 2007 / Published: 20 December 2007
(This article belongs to the Special Issue Ocean Remote Sensing)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: About 30 years ago, NASA launched the first ocean-color observing satellite:the Coastal Zone Color Scanner. CZCS had 5 bands in the visible-infrared domain with anobjective to detect changes of phytoplankton (measured by concentration of chlorophyll) inthe oceans. Twenty years later, for the same objective but with advanced technology, theSea-viewing Wide Field-of-view Sensor (SeaWiFS, 7 bands), the Moderate-ResolutionImaging Spectrometer (MODIS, 8 bands), and the Medium Resolution ImagingSpectrometer (MERIS, 12 bands) were launched. The selection of the number of bands andtheir positions was based on experimental and theoretical results achieved before thedesign of these satellite sensors. Recently, Lee and Carder (2002) demonstrated that foradequate derivation of major properties (phytoplankton biomass, colored dissolved organicmatter, suspended sediments, and bottom properties) in both oceanic and coastalenvironments from observation of water color, it is better for a sensor to have ~15 bands inthe 400 – 800 nm range. In that study, however, it did not provide detailed analysesregarding the spectral locations of the 15 bands. Here, from nearly 400 hyperspectral (~ 3-nm resolution) measurements of remote-sensing reflectance (a measure of water color)taken in both coastal and oceanic waters covering both optically deep and optically shallowwaters, first- and second-order derivatives were calculated after interpolating themeasurements to 1-nm resolution. From these derivatives, the frequency of zero values foreach wavelength was accounted for, and the distribution spectrum of such frequencies wasobtained. Furthermore, the wavelengths that have the highest appearance of zeros wereidentified. Because these spectral locations indicate extrema (a local maximum orminimum) of the reflectance spectrum or inflections of the spectral curvature, placing the bands of a sensor at these wavelengths maximizes the potential of capturing (and then restoring) the spectral curve, and thus maximizes the potential of accurately deriving properties of the water column and/or bottom of various aquatic environments with a multi-band sensor.
Keywords: Ocean-color remote sensing; spectral bands
PDF Full-text Download PDF Full-Text [632 KB, uploaded 21 June 2014 01:33 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Lee, Z.; Carder, K.; Arnone, R.; He, M. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors 2007, 7, 3428-3441.

AMA Style

Lee Z, Carder K, Arnone R, He M. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors. 2007; 7(12):3428-3441.

Chicago/Turabian Style

Lee, ZhongPing; Carder, Kendall; Arnone, Robert; He, MingXia. 2007. "Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments." Sensors 7, no. 12: 3428-3441.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert