Next Article in Journal
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
Next Article in Special Issue
A Novel Early Warning System Based on a Sediment Microbial Fuel Cell for In Situ and Real Time Hexavalent Chromium Detection in Industrial Wastewater
Previous Article in Journal
Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks
Previous Article in Special Issue
Detection of Abrin by Electrochemiluminescence Biosensor Based on Screen Printed Electrode
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessShort Note
Sensors 2018, 18(2), 607; https://doi.org/10.3390/s18020607

Flame-Oxidized Stainless-Steel Anode as a Probe in Bioelectrochemical System-Based Biosensors to Monitor the Biochemical Oxygen Demand of Wastewater

1
Graduate School of Nature Science & Technology, Kanazawa University, Kakumamachi Kanazawa, Ishikawa 920-1192, Japan
2
Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
*
Author to whom correspondence should be addressed.
Received: 16 January 2018 / Revised: 13 February 2018 / Accepted: 14 February 2018 / Published: 16 February 2018
(This article belongs to the Special Issue Environmental Monitoring Biosensors)
View Full-Text   |   Download PDF [1557 KB, uploaded 23 February 2018]   |  

Abstract

Biochemical oxygen demand (BOD) is a widely used index of water quality in wastewater treatment; however, conventional measurement methods are time-consuming. In this study, we analyzed a novel flame-oxidized stainless steel anode (FO-SSA) for use as the probe of bioelectrochemical system (BES)-based biosensors to monitor the BOD of treated swine wastewater. A thinner biofilm formed on the FO-SSA compared with that on a common carbon-cloth anode (CCA). The FO-SSA was superior to the CCA in terms of rapid sensing; the response time of the FO-SSA to obtain the value of R2 > 0.8 was 1 h, whereas the CCA required 4 h. These results indicate that the FO-SSA offers better performance than traditional CCAs in BES biosensors and can be used to improve biomonitoring of wastewater. View Full-Text
Keywords: biochemical oxygen demand; bioelectrochemical system; biosensor; flame oxidation; livestock wastewater; metal anode; stainless steel biochemical oxygen demand; bioelectrochemical system; biosensor; flame oxidation; livestock wastewater; metal anode; stainless steel
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Liang, Q.; Yamashita, T.; Yamamoto-Ikemoto, R.; Yokoyama, H. Flame-Oxidized Stainless-Steel Anode as a Probe in Bioelectrochemical System-Based Biosensors to Monitor the Biochemical Oxygen Demand of Wastewater. Sensors 2018, 18, 607.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top