Next Article in Journal
Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology
Previous Article in Journal
Miniaturized Real-Time PCR on a Q3 System for Rapid KRAS Genotyping
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(4), 746; doi:10.3390/s17040746

Quantification of Lycopene, β-Carotene, and Total Soluble Solids in Intact Red-Flesh Watermelon (Citrullus lanatus) Using On-Line Near-Infrared Spectroscopy

Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara 44121, Italy
*
Author to whom correspondence should be addressed.
Academic Editor: W. Rudolf Seitz
Received: 31 January 2017 / Revised: 16 March 2017 / Accepted: 28 March 2017 / Published: 11 April 2017
(This article belongs to the Section Chemical Sensors)
View Full-Text   |   Download PDF [5468 KB, uploaded 25 April 2017]   |  

Abstract

A great interest has recently been focused on lycopene and β-carotene, because of their antioxidant action in the organism. Red-flesh watermelon is one of the main sources of lycopene as the most abundant carotenoid. The use of near-infrared spectroscopy (NIRS) in post-harvesting has permitted us to rapidly quantify lycopene, β-carotene, and total soluble solids (TSS) on single intact fruits. Watermelons, harvested in 2013–2015, were submitted to near-infrared (NIR) radiation while being transported along a conveyor belt system, stationary and in movement, and at different positions on the belt. Eight hundred spectra from 100 samples were collected as calibration set in the 900–1700 nm interval. Calibration models were performed using partial least squares (PLS) regression on pre-treated spectra (derivatives and SNV) in the ranges 2.65–151.75 mg/kg (lycopene), 0.19–9.39 mg/kg (β-carotene), and 5.3%–13.7% (TSS). External validation was carried out with 35 new samples and on 35 spectra. The PLS models for intact watermelon could predict lycopene with R2 = 0.877 and SECV = 15.68 mg/kg, β-carotene with R2 = 0.822 and SECV = 0.81 mg/kg, and TSS with R2 = 0.836 and SECV = 0.8%. External validation has confirmed predictive ability with R2 = 0.805 and RMSEP = 16.19 mg/kg for lycopene, R2 = 0.737 and RMSEP = 0.96 mg/kg for β-carotene, and R2 = 0.707 and RMSEP = 1.4% for TSS. The results allow for the market valorization of fruits. View Full-Text
Keywords: watermelon; lycopene; β-carotene; carotenoids; total soluble solid (TSS); Near Infrared Spectroscopy watermelon; lycopene; β-carotene; carotenoids; total soluble solid (TSS); Near Infrared Spectroscopy
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Tamburini, E.; Costa, S.; Rugiero, I.; Pedrini, P.; Marchetti, M.G. Quantification of Lycopene, β-Carotene, and Total Soluble Solids in Intact Red-Flesh Watermelon (Citrullus lanatus) Using On-Line Near-Infrared Spectroscopy. Sensors 2017, 17, 746.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top