Next Article in Journal
Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection
Next Article in Special Issue
Arbitrarily Accessible 3D Microfluidic Device for Combinatorial High-Throughput Drug Screening
Previous Article in Journal
Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener
Previous Article in Special Issue
A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications
Article Menu

Export Article

Open AccessReview
Sensors 2016, 16(9), 1514; doi:10.3390/s16091514

Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms

1
Department of Electronics, Bioelectronics and Nanobioengineering Research Group (SIC-BIO), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
2
IBEC-Institute of Bioengineering of Catalonia, Nanobioengineering Research Group, Baldiri Reixac 10-12, 08028 Barcelona, Spain
3
CIBER-BBN-Biomedical Research Networking Centre for Bioengineering, Biomaterials and Nanomedicine, María de Luna 11, Edificio CEEI, 50018 Zaragoza, Spain
*
Author to whom correspondence should be addressed.
Academic Editors: Amine Miled and Jesse Greener
Received: 23 February 2016 / Revised: 12 August 2016 / Accepted: 9 September 2016 / Published: 16 September 2016
(This article belongs to the Special Issue Microfluidics-Based Microsystem Integration Research)
View Full-Text   |   Download PDF [2937 KB, uploaded 16 September 2016]   |  

Abstract

Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments. View Full-Text
Keywords: dielectrophoresis; impedance; bacteria; on-chip; microfluidics dielectrophoresis; impedance; bacteria; on-chip; microfluidics
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Páez-Avilés, C.; Juanola-Feliu, E.; Punter-Villagrasa, J.; del Moral Zamora, B.; Homs-Corbera, A.; Colomer-Farrarons, J.; Miribel-Català, P.L.; Samitier, J. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms. Sensors 2016, 16, 1514.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top