Next Article in Journal
The Control of Tendon-Driven Dexterous Hands with Joint Simulation
Next Article in Special Issue
Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons
Previous Article in Journal
Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring
Previous Article in Special Issue
Recommendations for Standardizing Validation Procedures Assessing Physical Activity of Older Persons by Monitoring Body Postures and Movements
Article Menu

Export Article

Open AccessArticle
Sensors 2014, 14(1), 1705-1722; doi:10.3390/s140101705

Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control

Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba 305-8577, Japan
Center for Cybernics Research, University of Tsukuba, Tsukuba 305-8577, Japan
Japan Science and Technology Agency, Saitama 332-0012, Japan
Author to whom correspondence should be addressed.
Received: 15 November 2013 / Revised: 31 December 2013 / Accepted: 31 December 2013 / Published: 17 January 2014
(This article belongs to the Special Issue Wearable Gait Sensors)
View Full-Text   |   Download PDF [1703 KB, uploaded 21 June 2014]   |  


In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb synergies. The developed control system provides assisted motion in coherence with the motion of other unassisted limbs. The system utilizes the instrumented cane together with body worn sensors, and provides assistance for start, stop and continuous walking. We verified the function of the proposed method and the developed wearable system through gait trials on treadmill and on ground. The achievement contributes to finding an intuitive and feasible interface between human and robot through wearable gait sensors for practical use of assistive technology. It also contributes to the technology for cognitively assisted locomotion, which helps the locomotion of physically challenged people.
Keywords: wearable sensors; motion intention; exoskeleton robot; hemiplegia; cane wearable sensors; motion intention; exoskeleton robot; hemiplegia; cane

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control. Sensors 2014, 14, 1705-1722.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top