Next Article in Journal
Experimental Investigation on Centrifugal Compressor Blade Crack Classification Using the Squared Envelope Spectrum
Next Article in Special Issue
Programmable Gain Amplifiers with DC Suppression and Low Output Offset for Bioelectric Sensors
Previous Article in Journal
Quantitative Assessment of Birefringent Skin Structures in Scattered Light Confocal Imaging Using Radially Polarized Light
Previous Article in Special Issue
Surface Electromyography Signal Processing and Classification Techniques
Sensors 2013, 13(9), 12536-12547; doi:10.3390/s130912536
Article

Model-Based Spike Detection of Epileptic EEG Data

1,2
,
3
,
3
 and
1,2,*
1 Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan 2 Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan 3 Department of Neurology, National Cheng Kung University Hospital, No. 138, Sheng Li Road, Tainan City 704, Taiwan
* Author to whom correspondence should be addressed.
Received: 17 June 2013 / Revised: 6 September 2013 / Accepted: 13 September 2013 / Published: 17 September 2013
(This article belongs to the Special Issue Biomedical Sensors and Systems)
View Full-Text   |   Download PDF [399 KB, uploaded 21 June 2014]   |   Browse Figures

Abstract

Accurate automatic spike detection is highly beneficial to clinical assessment of epileptic electroencephalogram (EEG) data. In this paper, a new two-stage approach is proposed for epileptic spike detection. First, the k-point nonlinear energy operator (k-NEO) is adopted to detect all possible spike candidates, then a newly proposed spike model with slow wave features is applied to these candidates for spike classification. Experimental results show that the proposed system, using the AdaBoost classifier, outperforms the conventional method in both two- and three-class EEG pattern classification problems. The proposed system not only achieves better accuracy for spike detection, but also provides new ability to differentiate between spikes and spikes with slow waves. Though spikes with slow waves occur frequently in epileptic EEGs, they are not used in conventional spike detection. Identifying spikes with slow waves allows the proposed system to have better capability for assisting clinical neurologists in routine EEG examinations and epileptic diagnosis.
Keywords: epilepsy; slow wave; spike detection; spike classification; nonlinear energy operator epilepsy; slow wave; spike detection; spike classification; nonlinear energy operator
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Liu, Y.-C.; Lin, C.-C.K.; Tsai, J.-J.; Sun, Y.-N. Model-Based Spike Detection of Epileptic EEG Data. Sensors 2013, 13, 12536-12547.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert