Sensors 2011, 11(1), 409-424; doi:10.3390/s110100409

Toward a Continuous Intravascular Glucose Monitoring System

1,* email, 1email, 2email, 1email, 1,3,4email and 1email
Received: 11 November 2010; in revised form: 25 December 2010 / Accepted: 26 December 2010 / Published: 31 December 2010
(This article belongs to the Special Issue Bio-devices and Materials)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Proof-of-concept studies that display the potential of using a glucose-sensitive hydrogel as a continuous glucose sensor are presented. The swelling ratio, porosity, and diffusivity of the hydrogel increased with glucose concentration. In glucose solutions of 50, 100, 200, and 300 mg/dL, the hydrogel swelling ratios were 4.9, 12.3, 15.9, and 21.7, respectively, and the swelling was reversible. The impedance across the hydrogel depended solely on the thickness and had an average increase of 47 W/mm. The hydrogels exposed to a hyperglycemic solution were more porous than the hydrogels exposed to a normal glycemic solution. The diffusivity of 390 Da MW fluorescein isothiocyanate in hydrogels exposed to normal and hyperglycemic solutions was examined using fluorescence recovery after photobleaching and was found to be 9.3 × 10−14 and 41.4 × 10−14 m2/s, respectively, compared to 6.2 × 10−10 m2/s in glucose solution. There was no significant difference between the permeability of hydrogels in normal and hyperglycemic glucose solutions with averages being 5.26 × 10−17 m2 and 5.80 × 10−17 m2, respectively, which resembles 2–4% agarose gels. A prototype design is presented for continuous intravascular glucose monitoring by attaching a glucose sensor to an FDA-approved stent.
Keywords: glucose monitoring; hydrogels; biosensors; polymers; continuous; intravascular; stent, wireless
PDF Full-text Download PDF Full-Text [622 KB, uploaded 21 June 2014 03:27 CEST]

Export to BibTeX |

MDPI and ACS Style

Beier, B.; Musick, K.; Matsumoto, A.; Panitch, A.; Nauman, E.; Irazoqui, P. Toward a Continuous Intravascular Glucose Monitoring System. Sensors 2011, 11, 409-424.

AMA Style

Beier B, Musick K, Matsumoto A, Panitch A, Nauman E, Irazoqui P. Toward a Continuous Intravascular Glucose Monitoring System. Sensors. 2011; 11(1):409-424.

Chicago/Turabian Style

Beier, Brooke; Musick, Katherine; Matsumoto, Akira; Panitch, Alyssa; Nauman, Eric; Irazoqui, Pedro. 2011. "Toward a Continuous Intravascular Glucose Monitoring System." Sensors 11, no. 1: 409-424.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert