Next Article in Journal
Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling
Previous Article in Journal
Association of Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms with Osteoporotic Vertebral Compression Fractures (OVCFs) in Postmenopausal Women
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2016, 17(12), 2058; doi:10.3390/ijms17122058

Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells

School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
*
Author to whom correspondence should be addressed.
Academic Editor: Pamela Lein
Received: 23 September 2016 / Revised: 22 November 2016 / Accepted: 30 November 2016 / Published: 9 December 2016
(This article belongs to the Section Molecular Toxicology)
View Full-Text   |   Download PDF [1858 KB, uploaded 9 December 2016]   |  

Abstract

Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA. View Full-Text
Keywords: methylmercury; mitochondria biogenesis; microRNA; developmental neurotoxicity methylmercury; mitochondria biogenesis; microRNA; developmental neurotoxicity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, X.; Yan, M.; Zhao, L.; Wu, Q.; Wu, C.; Chang, X.; Zhou, Z. Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int. J. Mol. Sci. 2016, 17, 2058.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top