Next Article in Journal
P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases
Next Article in Special Issue
Effect of Lowering Asymmetric Dimethylarginine (ADMA) on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass
Previous Article in Journal
Calcium and Vitamin D in the Regulation of Energy Balance: Where Do We Stand?
Previous Article in Special Issue
Endogenous Nitric-Oxide Synthase Inhibitor ADMA after Acute Brain Injury
Article Menu

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2014, 15(3), 4946-4964; doi:10.3390/ijms15034946

Exogenous Asymmetric Dimethylarginine (ADMA) in Pathogenesis of Ischemia-Reperfusion-Induced Gastric Lesions: Interaction with Protective Nitric Oxide (NO) and Calcitonin Gene-Related Peptide (CGRP)

Department of Physiology, Jagiellonian University Medical College, Grzegorzecka Street 16, Cracow 31-531, Poland
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Received: 27 December 2013 / Revised: 3 March 2014 / Accepted: 4 March 2014 / Published: 20 March 2014
(This article belongs to the Special Issue ADMA and Nitrergic System)
View Full-Text   |   Download PDF [1012 KB, uploaded 19 June 2014]   |  

Abstract

Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide (NO) synthesis inhibitor and pro-inflammatory factor. We investigated the role of ADMA in rat gastric mucosa compromised through 30 min of gastric ischemia (I) and 3 h of reperfusion (R). These I/R animals were pretreated with ADMA with or without the combination of l-arginine, calcitonin gene-related peptide (CGRP) or a small dose of capsaicin, all of which are known to afford protection against gastric lesions, or with a farnesoid X receptor (FXR) agonist, GW 4064, to increase the metabolism of ADMA. In the second series, ADMA was administered to capsaicin-denervated rats. The area of gastric damage was measured with planimetry, gastric blood flow (GBF) was determined by H2-gas clearance, and plasma ADMA and CGRP levels were determined using ELISA and RIA. ADMA significantly increased I/R-induced gastric injury while significantly decreasing GBF, the luminal NO content, and the plasma level of CGRP. This effect of ADMA was significantly attenuated by pretreatment with CGRP, l-arginine, capsaicin, or a PGE2 analogue. In GW4064 pretreated animals, the I/R injury was significantly reduced and this effect was abolished by co-treatment with ADMA. I/R damage potentiated by ADMA was exacerbated in capsaicin-denervated animals with a further reduction of CGRP. Plasma levels of IL-10 were significantly decreased while malonylodialdehyde (MDA) and plasma TNF-α contents were significantly increased by ADMA. In conclusion, ADMA aggravates I/R-induced gastric lesions due to a decrease of GBF, which is mediated by a fall in NO and CGRP release, and the enhancement of lipid peroxidation and its pro-inflammatory properties. View Full-Text
Keywords: asymmetric dimethyl arginine; gastric mucosa; ischemia/reperfusion; farnesoid X receptor; gastric damage; sensory neurons; calcitonin gene-related peptide; capsaicin asymmetric dimethyl arginine; gastric mucosa; ischemia/reperfusion; farnesoid X receptor; gastric damage; sensory neurons; calcitonin gene-related peptide; capsaicin
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Magierowski, M.; Jasnos, K.; Sliwowski, Z.; Surmiak, M.; Krzysiek-Maczka, G.; Ptak-Belowska, A.; Kwiecien, S.; Brzozowski, T. Exogenous Asymmetric Dimethylarginine (ADMA) in Pathogenesis of Ischemia-Reperfusion-Induced Gastric Lesions: Interaction with Protective Nitric Oxide (NO) and Calcitonin Gene-Related Peptide (CGRP). Int. J. Mol. Sci. 2014, 15, 4946-4964.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top