Next Article in Journal
Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area
Next Article in Special Issue
Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking
Previous Article in Journal
Differential Effects of High-Fish Oil and High-Lard Diets on Cells and Cytokines Involved in the Inflammatory Process in Rat Insulin-Sensitive Tissues
Previous Article in Special Issue
Insight into Conformational Change for 14-3-3σ Protein by Molecular Dynamics Simulation
Article Menu

Export Article

Open AccessReview
Int. J. Mol. Sci. 2014, 15(2), 3064-3087; doi:10.3390/ijms15023064

Large-Scale Domain Motions and Pyridoxal-5'-Phosphate Assisted Radical Catalysis in Coenzyme B12-Dependent Aminomutases

Physics Department, National Dong Hwa University, Hualien 97401, Taiwan
This paper is dedicated to Emeritus Professor Perry A. Frey (Biochemistry Department, University of Wisconsin at Madison, Madison, WI, USA) on the occasion of his 78th birthday.
*
Author to whom correspondence should be addressed.
Received: 27 November 2013 / Revised: 25 December 2013 / Accepted: 22 January 2014 / Published: 20 February 2014
View Full-Text   |   Download PDF [1659 KB, uploaded 19 June 2014]   |  

Abstract

Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5'-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5'-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for D-ornithine as a substrate while 5,6-LAM can accept D-lysine and L-β-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM. View Full-Text
Keywords: coenzyme B12 (5'-deoxyadenosylcobalamin; dAdoCbl); pyridoxal-5'-phosphate (PLP; vitamin B6); lysine 5,6-aminomutase; ornithine 4,5-aminomutase; isotope-edited electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy; density functional theory (DFT) coenzyme B12 (5'-deoxyadenosylcobalamin; dAdoCbl); pyridoxal-5'-phosphate (PLP; vitamin B6); lysine 5,6-aminomutase; ornithine 4,5-aminomutase; isotope-edited electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy; density functional theory (DFT)
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Maity, A.N.; Chen, Y.-H.; Ke, S.-C. Large-Scale Domain Motions and Pyridoxal-5'-Phosphate Assisted Radical Catalysis in Coenzyme B12-Dependent Aminomutases. Int. J. Mol. Sci. 2014, 15, 3064-3087.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top