Next Article in Journal
Biofilms’ Role in Planktonic Cell Proliferation
Next Article in Special Issue
Arabidopsis Non-Coding RNA Regulation in Abiotic Stress Responses
Previous Article in Journal
Differentiated Epithelial- and Mesenchymal-Like Phenotypes in Subcutaneous Mouse Xenografts Using Diffusion Weighted-Magnetic Resonance Imaging
Previous Article in Special Issue
An Emerging Role for Long Non-Coding RNA Dysregulation in Neurological Disorders
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Editorial on the Special Issue: Regulation by Non-Coding RNAs

Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222 USA
Int. J. Mol. Sci. 2013, 14(11), 21960-21964; https://doi.org/10.3390/ijms141121960
Submission received: 22 September 2013 / Accepted: 31 October 2013 / Published: 6 November 2013
(This article belongs to the Special Issue Regulation by non-coding RNAs 2013)

Abstract

:
This Special Issue of IJMS is devoted to regulation by non-coding RNAs and contains both original research and review articles. An attempt is made to provide an up-to-date analysis of this very fast moving field and cover regulatory roles of both microRNAs and long non-coding RNAs. Multifaceted functions of these RNAs in normal cellular processes, as well as in disease progression, are highlighted.

These are exciting times for RNA molecular biologists, especially those concentrating on eukaryotic non-coding RNAs (ncRNAs)! New RNAs are constantly being found, e.g., thousands of large circular RNAs have recently been identified in human cells, some of which are shown to act as regulators that bind and sequester microRNAs [1]. The continuous discovery of new RNAs provides a rich environment for future RNA research and affords the possibility of many new functions being discovered.
This Special Issue of IJMS [2] contains both original research and review articles, and is devoted to regulation by ncRNAs. Multifaceted roles of these RNAs in normal cellular functions, as well as in disease processes, are highlighted. To mention a few, long ncRNAs (lncRNAs) and microRNAs (miRNAs) are both intimately involved in hematopoietic differentiation [3]. ncRNAs play a role in the adaptive immune response [4] and in diseases such as muscular dystrophies [5] and cancers [614]. Another paper discusses roles of lncRNAs in the pathogenesis of haematological malignancies [15]. The budding field of miRNAs and possible lncRNAs functions in cardiovascular disease is presented [16], as well as miRNA functions in abdominal aortic aneurysm [17]. In addition, it was shown that miRNAs regulate the expression of the Huntingtin gene HTT [18]; mutations in HTT cause Huntington’s disease. There is also a review on the 3′ non-coding region of mRNAs, which discusses alterations in 3′ UTRs sequences of mRNAs that may contribute to the development of various diseases in humans [19]. The fascinating viral immune system in prokaryotes, the RNA-based CRISPR complex is presented [20], and on “the other-side of the coin”, the intricate mechanism of evasion of host RNA-directed DNA methylation of single-stranded DNA viruses by the land plants [21]. The intimate genomic association of transposable elements and their remnants with ncRNA genes is also presented, and how lncRNA Alu-containing transcripts can participate in disease formation when mutated, such as the formation of brainstem cell atrophy that leads to death [22]. Highlighted also are the Alu-lncRNAs/Alu-mRNA interactions that inhibit mRNA expression. In addition, one paper is devoted to computational methods in comparative genomics in light of the availability of new sequencing technologies [23]. Another paper surveys the current knowledge on regulation of miRNAs, principles of target recognition, and highlights new and novel non-canonical functions [24], whereas a separate paper also discusses techniques for the prediction of microRNA targets [25]. However this Issue includes numerous other highly informative papers describing the interesting roles of miRNAs and lncRNAs in various biological processes and the regulation of these ncRNAs [2646]. In all, there are 44 papers, which attest to the large amount of interest and research activity in ncRNA molecular biology.

Conclusions

We indeed hope the readers will enjoy this Special Issue of IJMS and an attempt to present up-to-date findings in the rapidly moving and exciting field of non-coding RNA molecular biology and involvement of RNA in disease development.

Acknowledgments

I thank the Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University for support.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar]
  2. Regulation by non-coding RNAs. Available online: https://www.mdpi.com/journal/ijms/special_issues/regulation-by-non-coding-rnas (accessed on 23 September 2013).
  3. Morceau, F.; Chateauvieux, S.; Gaigneaux, A.; Dicato, M.; Diederich, M. Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int. J. Mol. Sci 2013, 14, 14744–14770. [Google Scholar]
  4. Curtale, G.; Citarella, F. Dynamic nature of noncoding RNA regulation of adaptive immune response. Int. J. Mol. Sci 2013, 14, 17347–17377. [Google Scholar]
  5. Erriquez, D.; Perini, G.; Ferlini, A. non-coding RNAs in muscle dystrophies. Int. J. Mol. Sci 2013, 14, 19681–19704. [Google Scholar]
  6. Hauptman, N.; Glavač, D. Long non-coding RNA in cancer. Int. J. Mol. Sci 2013, 14, 4655–4669. [Google Scholar]
  7. Calore, F.; Lovat, F.; Garofalo, M. Non-coding RNAs and cancer. Int. J. Mol. Sci 2013, 14, 17085–17110. [Google Scholar]
  8. Deng, G.; Sui, G. Noncoding RNA in oncogenesis: A new era of identifying key players. Int. J. Mol. Sci 2013, 14, 18319–18349. [Google Scholar]
  9. Lung, R.W.; Tong, J.H.; To, K.F. Emerging roles of small epstein-barr virus derived non-coding RNAs in epithelial malignancy. Int. J. Mol. Sci 2013, 14, 17378–17409. [Google Scholar]
  10. Li, X.; Zhang, Z.; Yu, M.; Li, L.; Du, G.; Xiao, W.; Yang, H. Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int. J. Mol. Sci 2013, 14, 16226–16239. [Google Scholar]
  11. Schwarzenbacher, D.; Balic, M.; Pichler, M. The role of microRNAs in breast cancer stem cells. Int. J. Mol. Sci 2013, 14, 14712–14723. [Google Scholar]
  12. Lee, C.H.; Kuo, W.H.; Lin, C.; Oyang, Y.J.; Huang, H.C.; Juan, H.F. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int. J. Mol. Sci 2013, 14, 11560–11606. [Google Scholar]
  13. Nishizawa, T.; Suzuki, S. The role of microRNA in gastric malignancy. Int. J. Mol. Sci 2013, 14, 9487–9496. [Google Scholar]
  14. Hannafon, B.N.; Ding, W.Q. Intercellular communication by exosome-derived microRNAs in cancer. Int. J. Mol. Sci 2013, 14, 14240–14269. [Google Scholar]
  15. Garitano-Trojaola, A.; Agirre, X.; Prósper, F.; Fortes, P. Long non-coding RNAs in haematological malignancies. Int. J. Mol. Sci 2013, 14, 15386–15422. [Google Scholar]
  16. Iaconetti, C.; Gareri, C.; Polimeni, A.; Indolfi, C. Non-coding RNAs: The “Dark Matter” of cardiovascular pathophysiology. Int. J. Mol. Sci 2013, 14, 19987–20018. [Google Scholar]
  17. Maegdefessel, L.; Spin, J.M.; Adam, M.; Raaz, U.; Toh, R.; Nakagami, F.; Tsao, P.S. Micromanaging abdominal aortic aneurysms. Int. J. Mol. Sci 2013, 14, 14374–14394. [Google Scholar]
  18. Kozlowska, E.; Krzyzosiak, W.J.; Koscianska, E. Regulation of huntingtin gene expression by miRNA-137, -214, -148a, and their respective isomiRs. Int. J. Mol. Sci 2013, 14, 16999–167016. [Google Scholar]
  19. Michalova, E.; Vojtesek, B.; Hrstka, R. Impaired Pre-mRNA processing and altered architecture of 3′ untranslated regions contribute to the development of human disorders. Int. J. Mol. Sci 2013, 14, 15681–15694. [Google Scholar]
  20. Richter, H.; Randau, L.; Plagens, A. Exploiting CRISPR/Cas: Interference mechanisms and applications. Int. J. Mol. Sci 2013, 14, 14518–14531. [Google Scholar]
  21. Pooggin, M.M. How can plant DNA viruses evade siRNA-directed DNA methylation and silencing? Int. J. Mol. Sci 2013, 14, 15233–15259. [Google Scholar]
  22. Hadjiargyrou, M.; Delihas, N. The intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci 2013, 14, 13307–13328. [Google Scholar]
  23. Bussotti, G.; Notredame, C.; Enright, A.J. Detecting and comparing non-coding RNAs in the high-throughput era. Int. J. Mol. Sci 2013, 14, 15423–15458. [Google Scholar]
  24. Doxakis, E. Principles of miRNA-target regulation in metazoan models. Int. J. Mol. Sci 2013, 14, 16280–16302. [Google Scholar]
  25. Zheng, H.; Fu, R.; Wang, J.T.; Liu, Q.; Chen, H.; Jiang, S.W. Advances in the techniques for the prediction of microRNA targets. Int. J. Mol. Sci 2013, 14, 8179–8187. [Google Scholar]
  26. Shuang, T.; Shi, C.; Chang, S.; Wang, M.; Bai, C.H. Downregulation of miR-17~92 expression increase paclitaxel sensitivity in human ovarian carcinoma SKOV3-TR30 cells via BIM instead of PTEN. Int. J. Mol. Sci 2013, 14, 3802–3816. [Google Scholar]
  27. Ruan, H.; Liu, S.; Li, F.; Li, X.; Fan, C. Prevention of tendon adhesions by ERK2 small interfering RNAs. Int. J. Mol. Sci 2013, 14, 4361–4371. [Google Scholar]
  28. Ma, J.; Yu, S.; Wang, F.; Bai, L.; Xiao, J.; Jiang, Y.; Chen, L.; Wang, J.; Jiang, A.; Li, M.; et al. MicroRNA transcriptomes relate intermuscular adipose tissue to metabolic risk. Int. J. Mol. Sci 2013, 14, 8611–8624. [Google Scholar]
  29. Eskildsen, T.V.; Jeppesen, P.L.; Schneider, M.; Nossent, A.Y.; Sandberg, M.B.; Hansen, P.B.; Jensen, C.H.; Hansen, M.L.; Marcussen, N.; Rasmussen, L.M.; et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int. J. Mol. Sci 2013, 14, 11190–11207. [Google Scholar]
  30. Nagata, Y.; Shimizu, E.; Hibio, N.; Ui-Tei, K. fluctuation of global gene expression by endogenous miRNA response to the introduction of an exogenous miRNA. Int. J. Mol. Sci 2013, 14, 11171–11189. [Google Scholar]
  31. Thomas, M.; Lange-Grünweller, K.; Hartmann, D.; Golde, L.; Schlereth, J.; Streng, D.; Aigner, A.; Grünweller, A.; Hartmann, R.K. Analysis of transcriptional regulation of the human miR-17–92 cluster; evidence for involvement of Pim-1. Int. J. Mol. Sci 2013, 14, 12273–12296. [Google Scholar]
  32. Hou, J.; Zhao, D. MicroRNA regulation in renal pathophysiology. Int. J. Mol. Sci 2013, 14, 13078–13092. [Google Scholar]
  33. Kang, S.M.; Choi, J.W.; Hong, S.H.; Lee, H.J. Up-regulation of microRNA* strands by their target transcripts. Int. J. Mol. Sci 2013, 14, 13231–13240. [Google Scholar]
  34. Battista, M.; Musto, A.; Navarra, A.; Minopoli, G.; Russo, T.; Parisi, S. miR-125b Regulates the early steps of ESC differentiation through Dies1 in a TGF-independent manner. Int. J. Mol. Sci 2013, 14, 13482–13496. [Google Scholar]
  35. Kushibiki, T.; Hirasawa, T.; Okawa, S.; Ishihara, M. Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT). Int. J. Mol. Sci 2013, 14, 13542–13558. [Google Scholar]
  36. Lin, L.L.; Wu, C.C.; Huang, H.C.; Chen, H.J.; Hsieh, H.L.; Juan, H.F. Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays. Int. J. Mol. Sci 2013, 14, 14270–14286. [Google Scholar]
  37. Rosa, A.; Brivanlou, A.H. Regulatory non-coding RNAs in pluripotent stem cells. Int. J. Mol. Sci 2013, 14, 14346–14373. [Google Scholar]
  38. Zhang, C.; Li, G.; Wang, J.; Zhu, S.; Li, H. Cascading cis-cleavage on transcript from trans-acting siRNA-producing locus 3. Int. J. Mol. Sci 2013, 14, 14689–14699. [Google Scholar]
  39. Pacilli, A.; Ceccarelli, C.; Treré, D.; Montanaro, L. SnoRNA U50 levels are regulated by cell proliferation and rRNA transcription. Int. J. Mol. Sci 2013, 14, 14923–14935. [Google Scholar]
  40. Nicolás, F.E.; Ruiz-Vázquez, R.M. Functional diversity of RNAi-associated sRNAs in fungi. Int. J. Mol. Sci 2013, 14, 15348–15360. [Google Scholar]
  41. Gomes, A.Q.; Nolasco, S.; Soares, H. Non-coding RNAs: Multi-tasking molecules in the cell. Int. J. Mol. Sci 2013, 14, 16010–16039. [Google Scholar]
  42. Mayr, F.; Heinemann, U. Mechanisms of Lin28-mediated miRNA and mRNA regulation-A structural and functional perspective. Int. J. Mol. Sci 2013, 14, 16532–16553. [Google Scholar]
  43. Hecker, M.; Thamilarasan, M.; Koczan, D.; Schröder, I.; Flechtner, K.; Freiesleben, S.; Füllen, G.; Thiesen, H.J.; Zettl, U.K. MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int. J. Mol. Sci 2013, 14, 16087–16110. [Google Scholar]
  44. Yu, S.; Zhang, R.; Zhu, C.; Cheng, J.; Wang, H.; Wu, J. MicroRNA-143 downregulates interleukin-13 receptor alpha1 in human mast cells. Int. J. Mol. Sci 2013, 14, 16958–16969. [Google Scholar]
  45. Stoller, M.L.; Chang, H.C.; Fekete, D.M. Bicistronic gene transfer tools for delivery of miRNAs and protein coding sequences. Int. J. Mol. Sci 2013, 14, 18239–18255. [Google Scholar]
  46. Li, J.; Xuan, Z.; Liu, C. Long non-coding RNAs and complex human diseases. Int. J. Mol. Sci 2013, 14, 18790–18808. [Google Scholar]

Share and Cite

MDPI and ACS Style

Delihas, N. Editorial on the Special Issue: Regulation by Non-Coding RNAs. Int. J. Mol. Sci. 2013, 14, 21960-21964. https://doi.org/10.3390/ijms141121960

AMA Style

Delihas N. Editorial on the Special Issue: Regulation by Non-Coding RNAs. International Journal of Molecular Sciences. 2013; 14(11):21960-21964. https://doi.org/10.3390/ijms141121960

Chicago/Turabian Style

Delihas, Nicholas. 2013. "Editorial on the Special Issue: Regulation by Non-Coding RNAs" International Journal of Molecular Sciences 14, no. 11: 21960-21964. https://doi.org/10.3390/ijms141121960

Article Metrics

Back to TopTop