Next Article in Journal
Bone Marrow-Derived HipOP Cell Population Is Markedly Enriched in Osteoprogenitors
Next Article in Special Issue
The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism
Previous Article in Journal
Structural and Oxidative Changes in the Kidney of Crucian Carp Induced by Silicon-Based Quantum Dots
Previous Article in Special Issue
Metal-Sulfate Induced Generation of ROS in Human Brain Cells: Detection Using an Isomeric Mixture of 5- and 6-Carboxy-2′,7′-Dichlorofluorescein Diacetate (Carboxy-DCFDA) as a Cell Permeant Tracer
Int. J. Mol. Sci. 2012, 13(8), 10212-10228; doi:10.3390/ijms130810212
Article

Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells

,
 and *
Received: 12 June 2012; in revised form: 7 August 2012 / Accepted: 14 August 2012 / Published: 16 August 2012
(This article belongs to the Special Issue Advances in Free Radicals in Biology and Medicine)
View Full-Text   |   Download PDF [1912 KB, updated 19 June 2014; original version uploaded 19 June 2014]   |   Browse Figures
Abstract: Acquired resistance to drugs commonly used for lymphoma treatment poses a significant barrier to improving lymphoma patient survival. Previous work with a lymphoma tissue culture model indicates that selection for resistance to oxidative stress confers resistance to chemotherapy-induced apoptosis. This suggests that adaptation to chronic oxidative stress can contribute to chemoresistance seen in lymphoma patients. Oxidative stress-resistant WEHI7.2 cell variants in a lymphoma tissue culture model exhibit a range of apoptosis sensitivities. We exploited this phenotype to test for mitochondrial changes affecting sensitivity to apoptosis in cells made resistant to oxidative stress. We identified impaired release of cytochrome c, and the intermembrane proteins adenylate kinase 2 and Smac/DIABLO, indicating inhibition of the pathway leading to permeabilization of the outer mitochondrial membrane. Blunting of a glucocorticoid-induced signal and intrinsic mitochondrial resistance to cytochrome c release contributed to both points of resistance. The level of Bcl-2 family members or a difference in Bim induction were not contributing factors. The extent of cardiolipin oxidation following dexamethasone treatment, however, did correlate with apoptosis resistance. The differences found in the variants were all proportionate to the degree of resistance to glucocorticoid treatment. We conclude that tolerance to oxidative stress leads to mitochondrial changes that confer resistance to apoptosis.
Keywords: mitochondria; cancer; reactive oxygen species; catalase; cytochrome c; cardiolipin mitochondria; cancer; reactive oxygen species; catalase; cytochrome c; cardiolipin
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Wilkinson, S.T.; Tome, M.E.; Briehl, M.M. Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells. Int. J. Mol. Sci. 2012, 13, 10212-10228.

AMA Style

Wilkinson ST, Tome ME, Briehl MM. Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells. International Journal of Molecular Sciences. 2012; 13(8):10212-10228.

Chicago/Turabian Style

Wilkinson, Sarah T.; Tome, Margaret E.; Briehl, Margaret M. 2012. "Mitochondrial Adaptations to Oxidative Stress Confer Resistance to Apoptosis in Lymphoma Cells." Int. J. Mol. Sci. 13, no. 8: 10212-10228.


Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert