Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice
Abstract
1. Introduction
2. Materials and methods
2.1. Preparation of Glycyrrhizin
2.2. Animals
2.3. Allergic Rhinitis Model
2.4. Animal Grouping and Treatment
2.5. Blood and Tissue Samples
2.6. Measurement of OVA-Specific IgE in Plasma
2.7. Biochemical Analysis
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusion
Reference
- Stewart, MG. Identification and management of undiagnosed and undertreated allergic rhinitis in adults and children. Clin. Exp. Allergy 2008, 38, 751–760. [Google Scholar]
- Dykewicz, MS; Fineman, S. Executive summary of joint task force practice parameters on diagnosis and management of rhinitis. Ann. Allergy Asthma Immunol 1998, 81, 463–468. [Google Scholar]
- Leynaert, B; Neukirch, C; Liard, R; Bousquet, J; Neukirch, F. Quality of life in allergic rhinitis and asthma: A population-based study of young adults. Am. J. Respir. Crit. Care. Med 2000, 162, 1391–1396. [Google Scholar]
- Juniper, EF; Thompson, AK; Ferrie, PJ; Roberts, JN. Validation of the standardized version of the Rhinoconjunctivitis Quality of Life Questionnaire. J. Allergy Clin. Immunol 1999, 104, 364–369. [Google Scholar]
- Simoens, S; Laekeman, G. Pharmacotherapy of allergic rhinitis: A pharmaco-economic approach. Allergy 2009, 64, 85–95. [Google Scholar]
- Akbay, E; Arbaq, H; Uyar, Y; Ozturk, K. Oxidative stress and antioxidant factors in pathophysiology of allergic rhinitis. Kulak Burun Bogaz Ihtis. Derg 2007, 17, 189–196. [Google Scholar]
- Bowler, RP; Crapo, JD. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol 2002, 110, 349–356. [Google Scholar]
- Mates, JM; Segura, JM; Pérez-Gómez, C; Rosado, R; Olalla, L; Blanca, M; Sánchez-Jiménez, FM. Antioxidant enzymatic activities in human blood cells after an allergic reaction to pollen or house dust mite. Blood Cells Mol. Dis 1999, 25, 103–109. [Google Scholar]
- Mates, JM; Pérez-Gómez, C; Blanca, M. Chemical and biological activity of free radical ‘scavengers’ in allergic diseases. Clin. Chim. Acta 2000, 296, 1–15. [Google Scholar]
- Sato, H; Goto, W; Yamamura, J; Kurokawa, M; Kageyama, S; Takahara, T. Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antiviral Res 1996, 30, 171–177. [Google Scholar]
- Rahman, S; Sultana, S. Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistar rats. Chem.-Biol. Interact 2006, 160, 61–69. [Google Scholar]
- Iida, R; Otsuka, Y; Matsumoto, K; Kuriyama, S; Hosoya, T. Pseudoaldosteronism due to the concurrent use of two herbal medicines containing glycyrrhizin: Interaction of glycyrrhizin with angiotensin-converting enzyme inhibitor. Clin. Exp. Nephrol 2006, 10, 131–135. [Google Scholar]
- Jayaprakasam, B; Doddaga, S; Wang, R; Holmes, D; Goldfarb, J; Li, X-M. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblast in vitro. J. Agric. Food Chem 2009, 57, 820–825. [Google Scholar]
- Ram, A; Mabalirajan, U; Das, M; Bhattacharya, I; Dinda, AK; Gangal, SV; Ghosh, B. Glycyrrhizin alleviates experimental allergic asthma in mice. Int. Immunopharmacol 2006, 6, 1468–1477. [Google Scholar]
- Gao, HX; Shao, SH; Wang, GQ. Research progress of Radix Glycyrrhizae. J. Jinggangshan Med. Coll 2004, 11, 8–11. [Google Scholar]
- Dai, JH; Iwatani, Y; Ishida, T; Terunuma, H; Kasai, H; Iwakula, Y. Glycyrrhizin enhances interleukin-12 production in peritoneal macrophages. Immunology 2001, 103, 235–243. [Google Scholar]
- Nokhodchi, A; Nazemiyeh, H; Ghafourian, T; Hassan-Zadeh, D; Valizadeh, H; Bahary, LAS. The effect of glycyrrhizin on the release rate and skin penetration of diclofenac sodium from topical formulations. Il Farmaco 2003, 57, 883–888. [Google Scholar]
- Jain, SK; McVie, R; Duett, J; Herbst, JJ. Erythrocyte membrane lipid peroxidation and glycolylated hemoglobin in diabetes. Diabetes 1989, 38, 1539–1543. [Google Scholar]
- Beutler, E; Duron, O; Kelly, BM. Improved method for the determination of blood glutathione. J. Lab. Clin. Med 1963, 61, 882–885. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol 1984, 105, 121–126. [Google Scholar]
- Beauchamp, C; Fridovich, L. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem 1971, 44, 276–287. [Google Scholar]
- Lawrence, RA; Burk, RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun 1976, 71, 952–958. [Google Scholar]
- Bowler, RP; Crapo, JD. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol 2002, 110, 349–356. [Google Scholar]
- Akbay, E; Arbağ, H; Uyar, Y; Oztürk, K. Oxidative stress and antioxidant factors in pathophysiology of allergic rhinitis. Kulak Burun Bogaz Ihtis Derg 2007, 17, 189–196. [Google Scholar]
- Akamatsu, H; Komura, J; Asada, Y; Niwa, Y. Mechanisms of anti-inflammatory action of glycyrrhizin: Effect of neutrophil functions including reactive oxygen species generation. Planta Med 1991, 57, 119–121. [Google Scholar]
- Cinatl, J; Morgenstern, B; Bauer, G; Chandra, P; Rabenau, H; Doerr, HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003, 361, 2045–2046. [Google Scholar]
- Ito, M; Nakashima, H; Baba, M; Pauwels, R; De Clercq, E; Shigeta, S; Yamamoto, N. Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the HIV virus. Antivir. Res 1987, 7, 127–137. [Google Scholar]
- Hirabayashi, K; Iwata, S; Matsumot, H; Mori, T; Shibata, S; Baba, M; Ito, M; Shigta, S; Nakashima, H; Yamamoto, N. Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type I (HIV-1) and herpes simplex virus type-1 (HSV-1). In Vitro Chem. Pharmal. Bull 1991, 39, 112–115. [Google Scholar]
- Kumada, H. Long-term treatment of chronic hepatitis C with glycyrrhizin [stronger Neo-Minophagen C (SNMC)] for preventing liver cirrhosis and hepatocellular carcinoma. Oncology 2002, 62, 94–100. [Google Scholar]
- Yoshida, T; Tsuda, Y; Takeuchi, D; Kobayashi, M; Pollard, RB; Suzuki, F. Glycyrrhizin inhibits neutrophil-associated generation of alternatively activated macrophages. Cytokine 2006, 33, 317. [Google Scholar]
- Mourboul, A; Brigitte, L-M; Choi, DW; Gerard, S; Vincent, L; Sophie, V. Synthesis and in vitro antioxidant activity of glycyrrhetinic acid derivatives tested with the cytochrome P450/NADPH system. Chem. Pharm. Bull 2004, 52, 1436–1439. [Google Scholar]
- Kiso, Y; Tohkino, M; Hikino, H; Hattori, M; Sakamoto, T; Namba, T. Mechanism of antihepatotoxic activity of glycyrrhizin, I: Effect on free radical generation and lipid peroxidation. Planta Med 1984, 50, 298–302. [Google Scholar]
- Park, HY; Park, SH; Yoon, HK; Han, MJ; Kim, DH. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Arch. Pharm. Res 2004, 27, 57–60. [Google Scholar]
- Di Mascio, P; Kaiser, S; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys 1989, 274, 532–538. [Google Scholar]
- Sies, H; Stahl, W; Vitamins, EC. beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr 1995, 62, 1315S–1321S. [Google Scholar]
- Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst 1999, 91, 317–331. [Google Scholar]
- Gann, PH; Ma, J; Giovannucci, E; Willett, W; Sacks, FM; Hennekens, CH; Stampfer, MJ. Lower prostate cancer risk in men with elevated plasma lycopene levels: Results of a prospective analysis. Cancer Res 1999, 59, 1225–1230. [Google Scholar]
- Mills, PK; Beeson, WL; Phillips, RL; Fraser, GE. Cohort study of diet lifestyle and prostate cancer in Adventist men. Cancer 1989, 64, 598–604. [Google Scholar]
- Fukushima, A; Sumi, T; Fukuda, K; Kumagai, N; Nishida, T; Tsuru, E; Ueno, H. Analysis of the interaction between IFN-γ and IFN-γR in the effector phase of experimental murine allergic conjunctivitis. Immunol. Lett 2006, 107, 119–124. [Google Scholar]
- Myburgh, E; Horsnell, WGC; Cutler, AJ; Arendse, B; Kubo, M; Brombacher, F. Murine IL-4 is able to signal via chimeric human IL-4Rα/mouse γ-chain receptor. Mol. Immunol 2008, 45, 1327–1336. [Google Scholar]
- Lee, C-M; Chang, J-H; Moon, D-O; Choi, YH; Choi, I-W; Park, Y-M; Kim, G-Y. Lycopene suppresses ovalbumin-induced airway inflammation in a murine model of asthma. Biochem. Biophys. Res. Comm 2008, 374, 248–252. [Google Scholar]
- Gavett, SH; Hearn, DJO; Li, X; Huang, SK; Finkelman, FD; Wills-Karp, M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J. Exp. Med 1995, 182, 1527–1536. [Google Scholar]
- Chopra, D; Simon, D. The Chopra Centre Herbal Handbook: Forty Natural Prescriptions for Perfect Health; Three Rivers Press: New York, NY, USA, 2000. [Google Scholar]
- Mills, SY. The Essential Book of Herbal Medicine; Penguin Books Ltd: Harmondsworth, Middlesex, UK, 1991. [Google Scholar]
- Mills, SY; Bone, K. Principles and Practice of Phytotherapy: Modern Herbal Medicine; Churchill livingstone: London, UK, 2000. [Google Scholar]
- Ruan, Q; Feng, Q; Gan, YM. Determination of glycyrrhizic acid in fangzhibiyan tablets by HPLC. Chin. Pharm 2007, 16, 37–38. [Google Scholar]
| Group | Body weight (g) |
|---|---|
| NC | 38.47 ± 1.17 |
| MC | 36.88 ± 2.13 a |
| lycopene 20 mg kg−1 | 37.32 ± 1.65 |
| glycyrrhizin 10 mg kg−1 | 37.52 ± 1.93 |
| glycyrrhizin 20 mg kg−1 | 37.83 ± 2.31 |
| glycyrrhizin 30 mg kg−1 | 37.94 ± 2.51 |
| Group | OVA specific IgE |
|---|---|
| NC | 1.35 ± 0.12 |
| MC | 4.59 ± 0.36 a |
| lycopene 20 mg kg−1 | 4.03 ± 0.44 |
| glycyrrhizin 10 mg kg−1 | 3.49 ± 0.35 a |
| glycyrrhizin 20 mg kg−1 | 2.82 ± 0.17 b |
| glycyrrhizin 30 mg kg−1 | 1.98 ± 0.13 b |
| Group | blood | nasal mucosa |
|---|---|---|
| MDA (nmol/mg protein) | MDA (nmol/mg protein) | |
| NC | 5.34 ± 0.09 | 4.93 ± 0.09 |
| MC | 7.85 ± 0.08 b | 8.35 ± 0.13 b |
| lycopene 20 mg kg−1 | 5.12 ± 0.09 d | 5.18 ± 0.03 d |
| glycyrrhizin 10 mg kg−1 | 7.15 ± 0.06 c | 6.76 ± 0.14 d |
| glycyrrhizin 20 mg kg−1 | 6.98 ± 0.07 d | 6.01 ± 0.12 d |
| glycyrrhizin 30 mg kg−1 | 6.77 ± 0.08 d | 5.34 ± 0.12 d |
| Group | blood | nasal mucosa |
|---|---|---|
| GSH (nmol/mg protein) | GSH (nmol/mg protein) | |
| NC | 8.04 ± 0.32 | 5.43 ± 0.11 |
| MC | 3.32 ± 0.11 b | 2.97 ± 0.09 b |
| lycopene 20 mg kg−1 | 7.57 ± 0.12 d | 6.03 ± 0.11 d |
| glycyrrhizin 10 mg kg−1 | 5.76 ± 0.15 d | 3.89 ± 0.08 d |
| glycyrrhizin 20 mg kg−1 | 6.43 ± 0.18 d | 4.38 ± 0.09 d |
| glycyrrhizin 30 mg kg−1 | 7.71 ± 0.24 d | 5.96 ± 0.12 d |
| Group | SOD (U/mg protein) | CAT (U/mg protein) | GSH-Px (U/mg protein) | TAOC (U/mg protein) |
|---|---|---|---|---|
| NC | 198.4 ± 4.98 | 23.09 ± 0.98 | 15.02 ± 0.76 | 10.87 ± 0.35 |
| MC | 154.2 ± 7.34 b | 17.56 ± 0.89 b | 9.03 ± 0.09 b | 7.45 ± 0.42 b |
| lycopene 20 mg kg−1 | 253.6 ± 9.04 d | 23.98 ± 0.16 d | 18.85 ± 0.13 d | 12.09 ± 0.35 d |
| glycyrrhizin 10 mg kg−1 | 160.4 ± 5.09 d | 19.85 ± 0.95 d | 11.46 ± 0.72 d | 8.98 ± 0.29 d |
| glycyrrhizin 20 mg kg−1 | 169.8 ± 4.99 d | 21.12 ± 1.08 d | 12.54 ± 0.58 d | 9.34 ± 0.27 d |
| glycyrrhizin 30 mg kg−1 | 175.9 ± 5.07 d | 22.11 ± 0.91 d | 13.27 ± 0.29 d | 10.32 ± 0.16 d |
| Group | SOD (U/mg protein) | CAT (U/mg protein) | GSH-Px (U/mg protein) | TAOC (U/mg protein) |
|---|---|---|---|---|
| NC | 231.5 ± 7.7 | 24.65 ± 0.67 | 19.05 ± 0.57 | 11.05 ± 0.37 |
| MC | 165.3 ± 4.9 b | 13.47 ± 0.54 b | 11.87 ± 0.39 b | 5.89 ± 0.04 b |
| lycopene 20 mg kg−1 | 227.4 ± 8.2 d | 22.13 ± 1.09 d | 21.03 ± 0.27 d | 11.32 ± 0.09 d |
| glycyrrhizin 10 mg kg−1 | 179.4 ± 5.1 d | 16.84 ± 0.78 d | 14.07 ± 0.13 d | 7.07 ± 0.08 d |
| glycyrrhizin 20 mg kg−1 | 195.6 ± 8.9 d | 18.03 ± 0.67 d | 16.48 ± 0.24 d | 8.25 ± 0.07 d |
| glycyrrhizin 30 mg kg−1 | 218.8 ± 6.2 d | 19.36 ± 0.47 d | 18.04 ± 0.65 d | 9.03 ± 0.08 d |
| Group | IFN-γ (pg/mg) | IL-4 (pg/mg) | IFN-γ/IL-4 |
|---|---|---|---|
| NC | 74.38 ± 2.82 | 56.29 ± 1.23 | 1.33 ± 0.09 |
| MC | 68.56 ± 1.73 b | 61.35 ± 1.95 b | 1.07 ± 0.05 b |
| lycopene 20 mg kg−1 | 71.36 ± 1.71 d | 59.09 ± 1.06 d | 1.19 ± 0.04 d |
| glycyrrhizin 10 mg kg−1 | 70.21 ± 1.47 d | 59.28 ± 1.11 d | 1.18 ± 0.07 d |
| glycyrrhizin 20 mg kg−1 | 72.82 ± 2.02 d | 58.32 ± 1.79 d | 1.25 ± 0.06 d |
| glycyrrhizin 30 mg kg−1 | 73.99 ± 2.36 d | 56.93 ± 1.37 d | 1.31 ± 0.05 d |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, X.-L.; Zhou, A.-G.; Zhang, L.; Chen, W.-J. Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice. Int. J. Mol. Sci. 2011, 12, 905-916. https://doi.org/10.3390/ijms12020905
Li X-L, Zhou A-G, Zhang L, Chen W-J. Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice. International Journal of Molecular Sciences. 2011; 12(2):905-916. https://doi.org/10.3390/ijms12020905
Chicago/Turabian StyleLi, Xiao-Lan, Ai-Guo Zhou, Li Zhang, and Wei-Jun Chen. 2011. "Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice" International Journal of Molecular Sciences 12, no. 2: 905-916. https://doi.org/10.3390/ijms12020905
APA StyleLi, X.-L., Zhou, A.-G., Zhang, L., & Chen, W.-J. (2011). Antioxidant Status and Immune Activity of Glycyrrhizin in Allergic Rhinitis Mice. International Journal of Molecular Sciences, 12(2), 905-916. https://doi.org/10.3390/ijms12020905
