Preparation and Characterization of Protocatechuic Acid Sulfates
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation of PCA Sulfates
2.2. Absorption and Mass Spectral Characteristics
2.3. NMR Analysis
2.4. Stability of the Freeze-Dried Sulfates
3. Materials and Methods
3.1. Standards and Reagents
3.2. Preparation of PCA Sulfates
3.3. HPLC-DAD-MS Analyses
3.4. Semipreparative HPLC
3.5. NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Food Funct. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Valdés, L.; Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food Funct. 2015, 6, 2424–2439. [Google Scholar] [CrossRef] [PubMed]
- Tomas-Barberan, F.A.; Selma, M.V.; Espín, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Rechner, A.R.; Kuhnle, G.; Bremner, P.; Hubbard, G.P.; Moore, K.P.; Rice-Evans, C.A. The metabolic fate of dietary polyphenols in humans. Free Radic. Biol. Med. 2002, 33, 220–235. [Google Scholar] [CrossRef]
- Serra, A.; Macià, A.; Romero, M.A.; Reguant, J.; Ortega, N.; Motilva, M.J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012, 130, 383–393. [Google Scholar] [CrossRef]
- Czank, C.; Cassidy, A.; Zhang, Q.; Morrison, D.J.; Preston, T.; Kroon, P.A.; Botting, N.P.; Kay, C.D. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. Am. J. Clin. Nutr. 2013, 97, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- De Ferrars, R.M.; Cassidy, A.; Curtis, P.; Kay, C.D. Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women. Mol. Nutr. Food Res. 2014, 58, 490–502. [Google Scholar] [CrossRef] [PubMed]
- De Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef] [PubMed]
- Pimpão, R.C.; Ventura, M.R.; Ferreira, R.B.; Williamson, G.; Santos, C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. Nutr. 2015, 113, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 2014, 952943. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 2015, 72, 643–650. [Google Scholar] [PubMed]
- Masella, R.; Santangelo, C.; D’Archivio, M.; LiVolti, G.; Giovannini, C.; Galvano, F. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Curr. Med. Chem. 2012, 19, 2901–2917. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010, 31, 446–467. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Pimpão, R.C.; Dew, T.; Figueira, M.E.; McDougall, G.J.; Stewart, D.; Ferreira, R.B.; Santos, C.N.; Williamson, G. Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol. Nutr. Food Res. 2014, 58, 1414–1425. [Google Scholar] [CrossRef]
- Amin, H.P.; Czank, C.; Raheem, S.; Zhang, Q.; Botting, N.P.; Cassidy, A.; Kay, C.D. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol. Nutr. Food Res. 2015, 59, 1095–1106. [Google Scholar] [CrossRef]
- Warner, E.F.; Zhang, Q.; Raheem, K.S.; O’Hagan, D.; O’Connell, M.A.; Kay, C.D. Common phenolic metabolites of flavonoids, but not their unmetabolized precursors, reduce the secretion of vascular cellular adhesion molecules by human endothelial cells. J. Nutr. 2016, 146, 465–473. [Google Scholar] [CrossRef]
- Di Gesso, J.L.; Kerr, J.S.; Zhang, Q.; Raheem, S.; Yalamanchili, S.K.; O’Hagan, D.; Kay, C.D.; O’Connell, M.A. Flavonoid metabolites reduce tumor necrosis factor-α secretion to a greater extent than their precursor compounds in human THP-1 monocytes. Mol. Nutr. Food Res. 2015, 59, 1143–1154. [Google Scholar] [CrossRef]
- Zhang, Q.; Raheem, K.S.; Botting, N.P.; Slawin, A.M.Z.; Kay, C.D.; O’Hagan, D. Flavonoid metabolism: The synthesis of phenolic glucuronides and sulfates as candidate metabolites for bioactivity studies of dietary flavonoids. Tetrahedron 2012, 68, 4194–4420. [Google Scholar] [CrossRef]
- Almeida, A.F.; Santos, C.N.; Ventura, M.R. Synthesis of new sulfated and glucuronated metabolites of dietary phenolic compounds identified in human biological samples. J. Agric. Food Chem. 2017, 65, 6460–6466. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Manzano, S.; González-Paramás, A.; Santos-Buelga, C.; Dueñas, M. Preparation and characterization of catechin sulfates, glucuronides, and methylethers with metabolic interest. J. Agric. Food Chem. 2009, 57, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors under request. |
Position. | δ 1H (ppm); m; J (Hz) | δ 13C (ppm) | HMBC |
---|---|---|---|
PCA-3-Sulfate | |||
1 | 125.2 | H2, H5 | |
2 | 7.76, s * | 124.1 | H6 |
3 | 140 | H2, H5, H6 | |
4 | 152.3 | H2, H5, H6 | |
5 | 6.80, d, J = 8.0 | 116.2 | H6 |
6 | 7.50, d, J = 8.4 | 126.5 | H2, H5 |
Carbonyl | 169 | H2, H6 | |
PCA-4-Sulfate | |||
1 | 148.1 | H2, H5 | |
2 | 7.40, s | 118.1 | H6 |
3 | 148.1 | H5, H2 | |
4 | 143.2 | H2, H6, H5 | |
5 | 7.14, d, J = 9.2 | 121.4 | |
6 | 7.31, d, J = 9.8 | 120.7 | H2 |
Carbonyl | 169 | H2, H6 |
Time (days) | PCA-4-Sulfate (mAU) | PCA-3-Sulfate (mAU) |
---|---|---|
1 | 1203.6 (100% *) | 5940.4 (100%) |
15 | 1062.3 (88%) | 5095.5 (85%) |
30 | 23.4 (2%) | 163.8 (2.7%) |
60 | 18 (1.5%) | 123.6 (2%) |
90 | 0 (0%) | 132.3 (2.2%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Zetina, S.M.; Gonzalez-Manzano, S.; Perez-Alonso, J.J.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Preparation and Characterization of Protocatechuic Acid Sulfates. Molecules 2019, 24, 307. https://doi.org/10.3390/molecules24020307
Gutierrez-Zetina SM, Gonzalez-Manzano S, Perez-Alonso JJ, Gonzalez-Paramas AM, Santos-Buelga C. Preparation and Characterization of Protocatechuic Acid Sulfates. Molecules. 2019; 24(2):307. https://doi.org/10.3390/molecules24020307
Chicago/Turabian StyleGutierrez-Zetina, Sofia M., Susana Gonzalez-Manzano, Jose J. Perez-Alonso, Ana M. Gonzalez-Paramas, and Celestino Santos-Buelga. 2019. "Preparation and Characterization of Protocatechuic Acid Sulfates" Molecules 24, no. 2: 307. https://doi.org/10.3390/molecules24020307
APA StyleGutierrez-Zetina, S. M., Gonzalez-Manzano, S., Perez-Alonso, J. J., Gonzalez-Paramas, A. M., & Santos-Buelga, C. (2019). Preparation and Characterization of Protocatechuic Acid Sulfates. Molecules, 24(2), 307. https://doi.org/10.3390/molecules24020307