Next Article in Journal
Molecular Dynamics Simulations of the Host Defense Peptide Temporin L and Its Q3K Derivative: An Atomic Level View from Aggregation in Water to Bilayer Perturbation
Next Article in Special Issue
Enzymatic Synthesis of N-Acetyllactosamine (LacNAc) Type 1 Oligomers and Characterization as Multivalent Galectin Ligands
Previous Article in Journal
Spectrum Effect Relationship and Component Knock-Out in Angelica Dahurica Radix by High Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer
Previous Article in Special Issue
Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(7), 1230; doi:10.3390/molecules22071230

The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2

1
Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
2
Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
*
Author to whom correspondence should be addressed.
Received: 5 July 2017 / Revised: 18 July 2017 / Accepted: 19 July 2017 / Published: 21 July 2017
(This article belongs to the Special Issue Synthesis and Biological Applications of Glycoconjugates)
View Full-Text   |   Download PDF [1944 KB, uploaded 21 July 2017]   |  

Abstract

The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol (2) and (Z)-6,4’-dihydroxy-4-methoxy-7-prenylaurone (3)) was performed in one step reactions from xanthohumol (1)—major prenylated chalcone naturally occurring in hops. Obtained flavonoids (23) and xanthohumol (1) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana. As a result six glycosides (49) were formed, of which four glycosides (69) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4-O-methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone (1) had the highest binding affinity to HSA (8.624 × 104 M−1) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone (2) and aurone (3). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity. View Full-Text
Keywords: prenylated flavonoids; xanthohumol; microbial glycosylation; glycosides; human serum albumin; cyclooxygenases; COX-1; COX-2 prenylated flavonoids; xanthohumol; microbial glycosylation; glycosides; human serum albumin; cyclooxygenases; COX-1; COX-2
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Tronina, T.; Strugała, P.; Popłoński, J.; Włoch, A.; Sordon, S.; Bartmańska, A.; Huszcza, E. The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2. Molecules 2017, 22, 1230.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top