Next Article in Journal
Synthesis and Evaluation of N-(3-Trifluoroacetyl-indol-7-yl) Acetamides for Potential In Vitro Antiplasmodial Properties
Next Article in Special Issue
Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State
Previous Article in Journal
Antibacterial Activities of Pyrenylated Coumarins from the Roots of Prangos hulusii
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(7), 1091; doi:10.3390/molecules22071091

Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols

1
Laboratório de Produtos da Biomassa, Departamento de Química, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
2
Laboratório de Física de Superfícies, Departamento de Física, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*
Author to whom correspondence should be addressed.
Received: 7 April 2017 / Revised: 14 June 2017 / Accepted: 15 June 2017 / Published: 2 July 2017
(This article belongs to the Special Issue Natural Polymers and Biopolymers)
View Full-Text   |   Download PDF [3883 KB, uploaded 2 July 2017]   |  

Abstract

Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams’ properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young’s modulus, which indicates that the increment of CO2 production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young’s modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23–41 kg·m−3), thermal conductivity (0.0128–0.0207 W·m−1·K−1), compressive strength (45–188 kPa), and Young’s modulus (3–28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices. View Full-Text
Keywords: polyurethane foams; castor oil; crude glycerol; biopolyols; thermal insulator polyurethane foams; castor oil; crude glycerol; biopolyols; thermal insulator
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Carriço, C.S.; Fraga, T.; Carvalho, V.E.; Pasa, V.M.D. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols. Molecules 2017, 22, 1091.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top