Next Article in Journal
Analysis of the Total Biflavonoids Extract from Selaginella doederleinii by HPLC-QTOF-MS and Its In Vitro and In Vivo Anticancer Effects
Next Article in Special Issue
Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu
Previous Article in Journal
Synthesis and Structural Evaluation of Organo-Ruthenium Complexes with β-Diketonates
Previous Article in Special Issue
Anti-Hyperglycemic Activity of Major Compounds from Calea ternifolia
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(2), 322; doi:10.3390/molecules22020322

Simultaneous Quantification of Nine New Furanocoumarins in Angelicae Dahuricae Radix Using Ultra-Fast Liquid Chromatography with Tandem Mass Spectrometry

State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
*
Author to whom correspondence should be addressed.
Academic Editor: Isabel C. F. R. Ferreira
Received: 9 December 2016 / Revised: 26 January 2017 / Accepted: 13 February 2017 / Published: 20 February 2017
(This article belongs to the Collection Bioactive Compounds)
View Full-Text   |   Download PDF [514 KB, uploaded 20 February 2017]   |  

Abstract

A series of new furanocoumarins with long-chain hydrophobic groups, namely andafocoumarins A–H and J, have been isolated from the dried roots of Angelica dahurica cv. Hangbaizhi (Angelicae Dahuricae radix) in our previous study, among which andafocoumarins A and B were demonstrated to have better anti-inflammatory activity than the positive controls. In this work, a sensitive, accurate, and efficient ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometer (UFLC-MS/MS) method was developed and validated for simultaneous quantification of above-mentioned nine compounds in four cultivars of Angelicae Dahuricae Radix. Chromatographic separation was performed on a Kinetex 2.6u C18 100 Å column (100 × 2.1 mm, 2.6 µm). The mobile phases were comprised of acetonitrile and water with a flow rate of 0.5 mL/min. Using the established method, all components could be easily separated within 12 min. With the multiple reaction monitor mode, all components were detected in positive electrospray ionization. The method was validated with injection precision, linearity, lower limit of detection, lower limit of quantification, precision, recovery, and stability, respectively. The final results demonstrated that the method was accurate and efficient, which could be used to simultaneously quantify the nine andafocoumarins in Angelicae Dahuricae Radix. The results also indicated that in different batches of Angelicae Dahuricae Radix, some of the andafocoumarins were significantly different in terms of content. View Full-Text
Keywords: furanocoumarin; Angelicae Dahuricae Radix; UFLC-MS/MS; simultaneous quantification furanocoumarin; Angelicae Dahuricae Radix; UFLC-MS/MS; simultaneous quantification
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, L.; Wei, W.; Yang, X.-W. Simultaneous Quantification of Nine New Furanocoumarins in Angelicae Dahuricae Radix Using Ultra-Fast Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2017, 22, 322.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top