Next Article in Journal
Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior
Next Article in Special Issue
Two Sulfur Glycoside Compounds Isolated from Lepidium apetalum Willd Protect NRK52e Cells against Hypertonic-Induced Adhesion and Inflammation by Suppressing the MAPK Signaling Pathway and RAAS
Previous Article in Journal
The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model
Previous Article in Special Issue
Antimicrobial Abietane-Type Diterpenoids from Plectranthus punctatus
Article Menu

Export Article

Open AccessReview
Molecules 2017, 22(11), 1942; doi:10.3390/molecules22111942

Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism

Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
Received: 10 October 2017 / Revised: 28 October 2017 / Accepted: 8 November 2017 / Published: 10 November 2017
(This article belongs to the Collection Bioactive Compounds)
View Full-Text   |   Download PDF [1072 KB, uploaded 10 November 2017]   |  

Abstract

Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin’s structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin’s many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism. View Full-Text
Keywords: silybin; silymarin; chemistry; bioavailability silybin; silymarin; chemistry; bioavailability
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules 2017, 22, 1942.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top