Next Article in Journal
Therapeutic Mechanisms of Vernonia amygdalina Delile in the Treatment of Prostate Cancer
Next Article in Special Issue
Rational Design of Nucleoside–Bile Acid Conjugates Incorporating a Triazole Moiety for Anticancer Evaluation and SAR Exploration
Previous Article in Journal
Novel FXa Inhibitor Identification through Integration of Ligand- and Structure-Based Approaches
Previous Article in Special Issue
Chemoinformatic Database Building and in Silico Hit-Identification of Potential Multi-Targeting Bioactive Compounds Extracted from Mushroom Species
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(10), 1595; doi:10.3390/molecules22101595

Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species

1
Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
2
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
3
CNC.IBILI, Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal
*
Author to whom correspondence should be addressed.
Received: 31 July 2017 / Revised: 18 September 2017 / Accepted: 20 September 2017 / Published: 22 September 2017
(This article belongs to the Special Issue Medicinal Chemistry in Europe)
View Full-Text   |   Download PDF [446 KB, uploaded 28 September 2017]   |  

Abstract

The composition of the essential oil (EO) of Thapsia villosa (Apiaceae), isolated by hydrodistillation from the plant’s aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5%) and methyleugenol (35.9%), were evaluated against clinically relevant yeasts (Candida spp., Cryptococcus neoformans and Malassezia furfur) and moulds (Aspergillus spp. and dermatophytes). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI). The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration) values against Candida spp., Cryptococcus neoformans, dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast–mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL) and their major compounds in Candida albicans. Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses. View Full-Text
Keywords: Thapsia villosa; essential oil; antifungal activity; inhibition yeast-mycelium transition; haemolytic activity Thapsia villosa; essential oil; antifungal activity; inhibition yeast-mycelium transition; haemolytic activity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Pinto, E.; Gonçalves, M.-J.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species. Molecules 2017, 22, 1595.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top