Next Article in Journal
Evaluation of LPS-Induced Acute Lung Injury Attenuation in Rats by Aminothiazole-Paeonol Derivatives
Next Article in Special Issue
Lipase-Catalyzed Transesterification of Egg-Yolk Phophatidylcholine with Concentrate of n-3 Polyunsaturated Fatty Acids from Cod Liver Oil
Previous Article in Journal
Biomimetic-Functionalized, Tannic Acid-Templated Mesoporous Silica as a New Support for Immobilization of NHase
Previous Article in Special Issue
Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(10), 1508; doi:10.3390/molecules22101508

Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil

1
Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte MG 31270-901, Brazil
2
Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, Villaviciosa de Odón, 28670 Madrid, Spain
3
Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain
4
Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina (UFSC), P.O. Box 476, Florianópolis SC 88040-900, Brazil
5
Instituto Nanocell, Divinópolis MG 35500-041, Brazil
6
Departamento de Engenharia e Tecnologías, Instituto Superior Politécnico de Tecnologías e Ciências (ISPTEC) Av. Luanda Sul, Rua Lateral Via S10, P.O. Box 1316, Talatona-Luanda Sul, Angola
*
Authors to whom correspondence should be addressed.
Received: 13 August 2017 / Revised: 27 August 2017 / Accepted: 4 September 2017 / Published: 25 September 2017
(This article belongs to the Special Issue Lipases and Lipases Modification)
View Full-Text   |   Download PDF [820 KB, uploaded 25 September 2017]   |  

Abstract

The oleaginous yeast Moniliella spathulata R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba (Acrocomia aculeate) cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The M. spathulata R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating cis-5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25–48 °C) and pH (6.5–8.4). The present study deals with the immobilization of M. spathulata R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (KM and Vmax). Ionic supports improved the enzyme–substrate affinity; however, it was not an effective strategy to increase the M. spathulata R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0. View Full-Text
Keywords: lipase; Moniliella spathulata; immobilization; fish oil; omega-3 lipase; Moniliella spathulata; immobilization; fish oil; omega-3
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Souza, L.T.A.; Moreno-Perez, S.; Fernández Lorente, G.; Cipolatti, E.P.; de Oliveira, D.; Resende, R.R.; Pessela, B.C. Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil. Molecules 2017, 22, 1508.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top