E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Lipases and Lipases Modification"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Bioorganic Chemistry".

Deadline for manuscript submissions: closed (20 August 2017)

Special Issue Editor

Guest Editor
Prof. Colin Barrow

Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
Website | E-Mail
Interests: lipases; omega-3; nanomaterials; graphene; biotechnology

Special Issue Information

Dear Colleagues,

Lipases are important catalysts that are able to function in both aqueous and solvent environments, making them particularly versatile for industrial applications such as the production of fine chemicals, biodiesel production and the formation of new food ingredients. Lipases are able to produce chiral products and can be reused multiple times if immobilised, making them cost effective. In this special issue, we aim to showcase the versatility of lipases as biocatalysts and encourage the submission of manuscripts that describe new uses of lipases, or technology that improves the utility of or mechanistic understanding of lipases as biocatalysts.

Prof. Colin Barrow
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lipase
  • immobilisation
  • biocatalyst
  • biodiesel
  • fine chemicals
  • food ingredient
  • kinetic resolution
  • detergents

Published Papers (12 papers)

View options order results:
result details:
Displaying articles 1-12
Export citation of selected articles as:

Research

Open AccessArticle Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization
Molecules 2017, 22(11), 1930; doi:10.3390/molecules22111930
Received: 25 September 2017 / Revised: 31 October 2017 / Accepted: 6 November 2017 / Published: 16 November 2017
PDF Full-text (4699 KB) | HTML Full-text | XML Full-text
Abstract
The use of polymers as supports for enzyme immobilization is a strategy that enables to remove the enzymes from a chemical reaction and improve their efficiency in catalytic processes. In this work, cellulose triacetate (CTA) was used for physical adsorption of phospholipase Lecitase
[...] Read more.
The use of polymers as supports for enzyme immobilization is a strategy that enables to remove the enzymes from a chemical reaction and improve their efficiency in catalytic processes. In this work, cellulose triacetate (CTA) was used for physical adsorption of phospholipase Lecitase ultra (LU). CTA is more hydrophobic than cellulose, shows good performance in the lipases immobilization being a good candidate for immobilization of phospholipases. We investigated the immobilization of LU in CTA, the stability of the immobilized enzyme (CTA-LU) and the performance of CTA-LU using soybean oil as a substrate. LU was efficiently immobilized in CTA reaching 97.1% in 60 min of contact with an enzymatic activity of 975.8 U·g−1. The CTA-LU system presents good thermal stability, being superior of the free enzyme and increase of the catalytic activity in the whole range of pH values. The difference observed for immobilized enzyme compared to free one occurs because of the interaction between the enzyme and the polymer, which stabilizes the enzyme. The CTA-LU system was used in the transesterification of soybean oil with methanol, with the production of fatty acid methyl esters. The results showed that CTA-LU is a promising system for enzymatic reactions. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle An Efficient Approach for Lipase-Catalyzed Synthesis of Retinyl Laurate Nutraceutical by Combining Ultrasound Assistance and Artificial Neural Network Optimization
Molecules 2017, 22(11), 1972; doi:10.3390/molecules22111972
Received: 20 October 2017 / Accepted: 13 November 2017 / Published: 15 November 2017
PDF Full-text (2786 KB) | HTML Full-text | XML Full-text
Abstract
Although retinol is an important nutrient, retinol is highly sensitive to oxidation. At present, some ester forms of retinol are generally used in nutritional supplements because of its stability and bioavailability. However, such esters are commonly synthesized by chemical procedures which are harmful
[...] Read more.
Although retinol is an important nutrient, retinol is highly sensitive to oxidation. At present, some ester forms of retinol are generally used in nutritional supplements because of its stability and bioavailability. However, such esters are commonly synthesized by chemical procedures which are harmful to the environment. Thus, this study utilized a green method using lipase as a catalyst with sonication assistance to produce a retinol derivative named retinyl laurate. Moreover, the process was optimized by an artificial neural network (ANN). First, a three-level-four-factor central composite design (CCD) was employed to design 27 experiments, which the highest relative conversion was 82.64%. Further, the optimal architecture of the CCD-employing ANN was developed, including the learning Levenberg-Marquardt algorithm, the transfer function (hyperbolic tangent), iterations (10,000), and the nodes of the hidden layer (6). The best performance of the ANN was evaluated by the root mean squared error (RMSE) and the coefficient of determination (R2) from predicting and observed data, which displayed a good data-fitting property. Finally, the process performed with optimal parameters actually obtained a relative conversion of 88.31% without long-term reactions, and the lipase showed great reusability for biosynthesis. Thus, this study utilizes green technology to efficiently produce retinyl laurate, and the bioprocess is well established by ANN-mediated modeling and optimization. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Open AccessArticle Yarrowia lipolytica Extracellular Lipase Lip2 as Biocatalyst for the Ring-Opening Polymerization of ε-Caprolactone
Molecules 2017, 22(11), 1917; doi:10.3390/molecules22111917
Received: 5 October 2017 / Accepted: 4 November 2017 / Published: 7 November 2017
PDF Full-text (2950 KB) | HTML Full-text | XML Full-text
Abstract
Yarrowia lipolytica (YL) is a “non-conventional” yeast that is capable of producing important metabolites. One of the most important products that is secreted by this microorganism is lipase, a ubiquitous enzyme that has considerable industrial potential and can be used as a biocatalyst
[...] Read more.
Yarrowia lipolytica (YL) is a “non-conventional” yeast that is capable of producing important metabolites. One of the most important products that is secreted by this microorganism is lipase, a ubiquitous enzyme that has considerable industrial potential and can be used as a biocatalyst in the pharmaceutical, food, and environmental industries. In this work, Yarrowia lipolytica lipase (YLL) was immobilized on Lewatit and Amberlite beads and is used in the enzymatic ring-opening polymerization (ROP) of cyclic esters in the presence of different organic solvents. YLL immobilized on Amberlite XAD7HP had the higher protein adsorption (96%) and a lipolytic activity of 35 U/g. Lewatit VPOC K2629 has the higher lipolytic activity (805 U/g) and 92% of protein adsorption. The highest molecular weight (Mn 10,685 Da) was achieved at 90 °C using YLL that was immobilized on Lewatit 1026 with decane as solvent after 60 h and 100% of monomer conversion. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Open AccessArticle Lipase-Catalyzed Transesterification of Egg-Yolk Phophatidylcholine with Concentrate of n-3 Polyunsaturated Fatty Acids from Cod Liver Oil
Molecules 2017, 22(10), 1771; doi:10.3390/molecules22101771
Received: 29 September 2017 / Revised: 16 October 2017 / Accepted: 18 October 2017 / Published: 19 October 2017
PDF Full-text (980 KB) | HTML Full-text | XML Full-text
Abstract
Phospholipids containing PUFAs are important vehicles for their delivering to the targeted tissues. In our research project we established enzymatic methods for the enrichment of natural egg-yolk PC with n-3 PUFAs. Instead of synthetic PUFA ethyl esters, the new strategy was developed using
[...] Read more.
Phospholipids containing PUFAs are important vehicles for their delivering to the targeted tissues. In our research project we established enzymatic methods for the enrichment of natural egg-yolk PC with n-3 PUFAs. Instead of synthetic PUFA ethyl esters, the new strategy was developed using polyunsaturated fatty acids enriched fraction (PUFA-EF) from cod liver oil as the natural acyl donors. PUFA-EF was produced by urea-complexation and contained 86.9% PUFA including 8.5% stearidonic acid (SDA; 18:4(n-3)), 26.7% EPA, and 45.2% DHA. The transesterification of PC with PUFA was catalyzed by lipases. After screening of enzymes the effect of reaction medium; molar ratio of substrates and etc. was investigated. The highest incorporation of PUFA was 45.6%; including 36.8% DHA and 5.8% EPA at the following reaction conditions: hexane; 55 °C; PUFA-EF/PC acyl ratio of 10; 48 h of reaction time and lipase B from Candida antarctica as a biocatalyst (20% of enzyme load). Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil
Molecules 2017, 22(10), 1508; doi:10.3390/molecules22101508
Received: 13 August 2017 / Revised: 27 August 2017 / Accepted: 4 September 2017 / Published: 25 September 2017
PDF Full-text (820 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The oleaginous yeast Moniliella spathulata R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba (Acrocomia aculeate) cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The M. spathulata R25L270
[...] Read more.
The oleaginous yeast Moniliella spathulata R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba (Acrocomia aculeate) cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The M. spathulata R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating cis-5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25–48 °C) and pH (6.5–8.4). The present study deals with the immobilization of M. spathulata R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (KM and Vmax). Ionic supports improved the enzyme–substrate affinity; however, it was not an effective strategy to increase the M. spathulata R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery
Molecules 2017, 22(10), 1598; doi:10.3390/molecules22101598
Received: 12 August 2017 / Revised: 7 September 2017 / Accepted: 17 September 2017 / Published: 24 September 2017
PDF Full-text (3218 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by
[...] Read more.
Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro, the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency (RTe) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens
Molecules 2017, 22(9), 1523; doi:10.3390/molecules22091523
Received: 24 July 2017 / Revised: 27 August 2017 / Accepted: 4 September 2017 / Published: 19 September 2017
PDF Full-text (3501 KB) | HTML Full-text | XML Full-text
Abstract
This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from
[...] Read more.
This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from Bacillus amyloliquefaciens). Among acyl donors with different carbon chain lengths, vinyl propionate was found to be the best. The influences of different organic solvents, reaction temperature, reaction time, enzyme loading and water content on the synthesis of the chloramphenicol esters were studied. The synthesis of chloramphenicol propionate (0.25 M) with 4.0 g L−1 of LipBA loading gave a conversion of ~98% and a purity of ~99% within 8 h at 50 °C in 1,4-dioxane as solvent. The optimum mole ratio of vinyl propionate to chloramphenicol was increased to 5:1. This is the first report of B. amyloliquefaciens lipase being used in chloramphenicol ester synthesis and a detailed study of the synthesis of chloramphenicol propionate using this reaction. The high enzyme activity and selectivity make lipase LipBA an attractive catalyst for green chemical synthesis of molecules with complex structures. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Open AccessArticle Improving the Efficiency of New Automatic Dishwashing Detergent Formulation by Addition of Thermostable Lipase, Protease and Amylase
Molecules 2017, 22(9), 1577; doi:10.3390/molecules22091577
Received: 29 July 2017 / Revised: 7 September 2017 / Accepted: 16 September 2017 / Published: 19 September 2017
PDF Full-text (2935 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The use of T1 lipase in automatic dishwashing detergent (ADD) is well established, but efficiency in hard water is very low. A new enzymatic environmentally-friendly dishwashing was formulated to be efficient in both soft and hard water. Thermostable enzymes such as T1 lipase
[...] Read more.
The use of T1 lipase in automatic dishwashing detergent (ADD) is well established, but efficiency in hard water is very low. A new enzymatic environmentally-friendly dishwashing was formulated to be efficient in both soft and hard water. Thermostable enzymes such as T1 lipase from Geobacillus strain T1, Rand protease from Bacillus subtilis strain Rand, and Maltogenic amylase from Geobacillus sp. SK70 were produced and evaluated for an automatic dishwashing detergent formulation. The components of the new ADD were optimized for compatibility with these three enzymes. In compatibility tests of the enzymes with different components, several criteria were considered. The enzymes were mostly stable in non-ionic surfactants, especially polyhydric alcohols, Glucopon UP 600, and in a mixture of sodium carbonate and glycine (30:70) buffer at a pH of 9.25. Sodium polyacrylate and sodium citrate were used in the ADD formulation as a dispersing agent and a builder, respectively. Dishwashing performance of the formulated ADDs was evaluated in terms of percent of soil removed using the Leenert‘s Improved Detergency Tester. The results showed that the combination of different hydrolysis enzymes could improve the washing efficiency of formulated ADD compared to the commercial ADD “Finish” at 40 and 50 C. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1a

Open AccessArticle Statistical Methodologies for the Optimization of Lipase and Biosurfactant by Ochrobactrum intermedium Strain MZV101 in an Identical Medium for Detergent Applications
Molecules 2017, 22(9), 1460; doi:10.3390/molecules22091460
Received: 22 July 2017 / Revised: 25 August 2017 / Accepted: 31 August 2017 / Published: 11 September 2017
PDF Full-text (1374 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Plackett–Burman design and the Box–Behnken design, statistical methodologies, were employed for the optimization lipase and biosurfactant production by Ochrobactrum intermedium strain MZV101 in an identical broth medium for detergent applications. Environmental factor pH determined to be most mutual significant variables on production.
[...] Read more.
The Plackett–Burman design and the Box–Behnken design, statistical methodologies, were employed for the optimization lipase and biosurfactant production by Ochrobactrum intermedium strain MZV101 in an identical broth medium for detergent applications. Environmental factor pH determined to be most mutual significant variables on production. A high concentration of molasses at high temperature and pH has a negative effect on lipase and biosurfactant production by O. intermedium strain MZV101. The chosen mathematical method of medium optimization was sufficient for improving the industrial production of lipase and biosurfactant by bacteria, which were respectively increased 3.46- and 1.89-fold. The duration of maximum production became 24 h shorter, so it was fast and cost-saving. In conclusion, lipase and biosurfactant production by O. intermedium strain MZV101 in an identical culture medium at pH 10.5–11 and 50–60 °C, with 1 g/L of molasses, seemed to be economical, fast, and effective for the enhancement of yield percentage for use in detergent applications. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii
Molecules 2017, 22(9), 1448; doi:10.3390/molecules22091448
Received: 3 August 2017 / Accepted: 29 August 2017 / Published: 4 September 2017
PDF Full-text (1525 KB) | HTML Full-text | XML Full-text
Abstract
Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results
[...] Read more.
Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold) in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea), cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ratio) than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of their application at large scale processes. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Open AccessArticle The Role of Solvent-Accessible Leu-208 of Cold-Active Pseudomonas fluorescens Strain AMS8 Lipase in Interfacial Activation, Substrate Accessibility and Low-Molecular Weight Esterification in the Presence of Toluene
Molecules 2017, 22(8), 1312; doi:10.3390/molecules22081312
Received: 7 July 2017 / Revised: 31 July 2017 / Accepted: 4 August 2017 / Published: 12 August 2017
PDF Full-text (3476 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208,
[...] Read more.
The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase’s conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Figure 1

Open AccessArticle Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa
Molecules 2017, 22(7), 1205; doi:10.3390/molecules22071205
Received: 12 May 2017 / Revised: 28 June 2017 / Accepted: 12 July 2017 / Published: 19 July 2017
PDF Full-text (6534 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Herein, a promising carrier, graphene oxide (GO) decorated with ZnO nanoparticles, denoted as GO/ZnO composite, has been designed and constructed. This carrier was characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetry. Then, Candida rugosa lipase (CRL) was
[...] Read more.
Herein, a promising carrier, graphene oxide (GO) decorated with ZnO nanoparticles, denoted as GO/ZnO composite, has been designed and constructed. This carrier was characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetry. Then, Candida rugosa lipase (CRL) was immobilized onto the GO-based materials via physical adsorption. Our results indicated that the lipase loading amount on the GO/ZnO composites was about 73.52 mg of protein per g. In the activity assay, the novel immobilized lipase GO/ZnO@CRL, exhibited particularly excellent performance in terms of thermostability and reusability. Within 30 min at 50 °C, the free lipase, GO@CRL and ZnO@CRL had respectively lost 64%, 62% and 41% of their initial activity. However, GO/ZnO@CRL still retained its activity of 63% after 180 min at 50 °C. After reuse of the GO/ZnO@CRL 14 times, 90% of the initial activity can be recovered. Meanwhile, the relative activity of GO@CRL and ZnO@CRL was 28% and 23% under uniform conditions. Hence, GO-decorated ZnO nanoparticles may possess great potential as carriers for immobilizing lipase in a wide range of applications. Full article
(This article belongs to the Special Issue Lipases and Lipases Modification)
Figures

Back to Top