Next Article in Journal
Synthesis of Novel 2,5-Disubstituted-1,3,4-thiadiazoles Clubbed 1,2,4-Triazole, 1,3,4-Thiadiazole, 1,3,4-Oxadiazole and/or Schiff Base as Potential Antimicrobial and Antiproliferative Agents
Next Article in Special Issue
Generation of Aptamers with an Expanded Chemical Repertoire
Previous Article in Journal
Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions
Previous Article in Special Issue
A Highlight of Recent Advances in Aptamer Technology and Its Application
Article Menu

Export Article

Open AccessArticle
Molecules 2015, 20(9), 16030-16047; doi:10.3390/molecules200916030

RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region

Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Academic Editor: Alain O. A. Miller
Received: 30 July 2015 / Revised: 25 August 2015 / Accepted: 29 August 2015 / Published: 2 September 2015
(This article belongs to the Special Issue Aptamers: Past, Present, and Future)
View Full-Text   |   Download PDF [1043 KB, uploaded 2 September 2015]   |  

Abstract

Background: Hepatitis C virus (HCV) contains a (+) ssRNA genome with highly conserved structural, functional RNA domains, many of them with unknown roles for the consecution of the viral cycle. Such genomic domains are candidate therapeutic targets. This study reports the functional characterization of a set of aptamers targeting the cis-acting replication element (CRE) of the HCV genome, an essential partner for viral replication and also involved in the regulation of protein synthesis. Methods: Forty-four aptamers were tested for their ability to interfere with viral RNA synthesis in a subgenomic replicon system. Some of the most efficient inhibitors were further evaluated for their potential to affect the recruitment of the HCV RNA-dependent RNA polymerase (NS5B) and the viral translation in cell culture. Results: Four aptamers emerged as potent inhibitors of HCV replication by direct interaction with functional RNA domains of the CRE, yielding a decrease in the HCV RNA levels higher than 90%. Concomitantly, one of them also induced a significant increase in viral translation (>50%). The three remaining aptamers efficiently competed with the binding of the NS5B protein to the CRE. Conclusions: Present findings confirm the potential of the CRE as an anti-HCV target and support the use of aptamers as molecular tools for investigating the functionality of RNA domains in viral genomes. View Full-Text
Keywords: RNA aptamers; antiHCV Aptamers; HCV genome; CRE; 5BSL3.2; functional RNA domain RNA aptamers; antiHCV Aptamers; HCV genome; CRE; 5BSL3.2; functional RNA domain
Figures

Figure 1a

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Fernández-Sanlés, A.; Berzal-Herranz, B.; González-Matamala, R.; Ríos-Marco, P.; Romero-López, C.; Berzal-Herranz, A. RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region. Molecules 2015, 20, 16030-16047.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top