Next Article in Journal
RutheniumII Complexes bearing Fused Polycyclic Ligands: From Fundamental Aspects to Potential Applications
Next Article in Special Issue
Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions
Previous Article in Journal
Surface-Functionalized Hyperbranched Poly(Amido Acid) Magnetic Nanocarriers for Covalent Immobilization of a Bacterial γ-Glutamyltranspeptidase
Previous Article in Special Issue
Beads-Based Electrochemical Assay for the Detection of Influenza Hemagglutinin Labeled with CdTe Quantum Dots
Article Menu

Export Article

Open AccessArticle
Molecules 2014, 19(4), 5013-5027; doi:10.3390/molecules19045013

Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria

1
Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street no 1-7, 011061 Bucharest, Romania
2
School of Medicine, Faculty of Public Health, SENESCYT 9 de Octubre N22-64 y Ramírez Dávalos - Casa Patrimonial, 170517 Quito, Ecuador
3
Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor no 1-3, 060101 Bucharest, Romania
4
Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
5
Institute of Cellular Biology and Pathology of Romanian Academy, "Nicolae Simionescu", Department of Fetal and Adult Stem Cell Therapy, 8, B.P. Hasdeu, 050568 Bucharest, Romania
6
Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu, 030304 Bucharest, Romania
7
Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
*
Author to whom correspondence should be addressed.
Received: 5 March 2014 / Revised: 9 April 2014 / Accepted: 14 April 2014 / Published: 22 April 2014
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
View Full-Text   |   Download PDF [1496 KB, uploaded 18 June 2014]   |  

Abstract

This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release. View Full-Text
Keywords: magnetite bio-active nanostructure; amoxicillin; MIC; S. aureus; E. coli magnetite bio-active nanostructure; amoxicillin; MIC; S. aureus; E. coli
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Grumezescu, A.M.; Gestal, M.C.; Holban, A.M.; Grumezescu, V.; Vasile, B.Ș.; Mogoantă, L.; Iordache, F.; Bleotu, C.; Mogoșanu, G.D. Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria. Molecules 2014, 19, 5013-5027.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top