The Seasonal Variation of the Chemical Composition of Essential Oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and Their Antimicrobial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microclimatic Factors
2.2. Extraction Yields of the Essential Oils from the Leaves of P. macrocarpa
2.3. Chemical Composition of the Essential Oils Obtained from the Leaves and the Ripe Fruit of P. macrocarpa
2.4. Antimicrobial Activity
Relative amount (%) b | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KI | January | February | March | April | May | June | July | August | September | October | November | December | |
verbanyl acetate | 1340 | 0.39 ± 0.04 a | 0.43 ± 0.01 a | 0.40 ± 0.01 a | 0.46 ± 0.06 a | 0.51 ± 0.02 a | 0.42 ± 0.01 a | 0.42 ± 0.04 a | 0.41 ± 0.03 a | 1.76 ± 0.96 a | 0.34 ± 0.01 a | 0.31 ± 0.19 a | 0.38 ± 0.01 a |
α-copaene | 1376 | 2.0 ± 0.3 a | 1.6 ± 0.9 a | 2.05 ± 0.07 a | 2.2 ± 0.2 a | 1.9 ± 0.8 a | 1.95 ± 0.02 a | 2.01 ± 0.09 a | 1.8 ± 0.2 a | 2.4 ± 0.9 a | 1.71 ± 0.01 a | 0.4 ± 0.2 b | 2.07 ± 0.05 a |
iso-longifolene | 1387 | 1.4 ± 0.1 a | 1.5 ± 0.1 a | 1.9 ± 0.1 a | 2.0 ± 0.9 a | 1.8 ± 0.9 a | 0.9 ± 0.8 b | 0.50 ± 0.02 b | 0.53 ± 0.02 b | 1.8 ± 0.9 a | 1.2 ± 0.7 b | 0.6 ± 0.2 b | 0.23 ± 0.01 b |
β-cedrene | 1418 | 0.72 ± 0.06 a | 0.80 ± 0.07 a | 0.75 ± 0.01 a | 0.9 ± 0.1 a | 1.3 ± 0.4 b | 1.4 ± 0.4 b | 1.08 ± 0.02 b | 1.1 ± 0.1 b | 0.96 ± 0.01 a | 0.85 ± 0.09 a | 0.6 ± 0.3 a | 0.85 ± 0.02 a |
α-guaiene | 1439 | 0.9 ± 0.3 a | 1.1 ± 0.3 a | 0.71 ± 0.01 a | 0.56 ± 0.03 b | 0.52 ± 0.07 b | 0.61 ± 0.08 b | 0.43 ± 0.01 b | 0.61 ± 0.02 b | 0.61 ± 0.01 b | 0.4 ± 0.2 b | 0.41 ± 0.07 b | 0.89 ± 0.01 a |
germacrene D | 1480 | 40 ± 7 a | 39 ± 7 a | 46.3 ± 0.4 a | 47 ± 1 a | 49.6 ± 0.7 b | 47.1 ± 0.9 a | 49 ± 2 b | 45 ± 1 a | 46.6 ± 0.1 a | 43 ± 3 a | 28.8 ± 0.8 b | 46.2 ± 0.7 a |
bicyclogermacrene | 1494 | 31 ± 3 a | 28 ± 7 a | 34.2 ± 0.3 a | 37 ± 1 a | 34 ± 2 a | 36.8 ± 0.5 a | 32 ± 2 a | 30.8 ± 0.2 a | 32.5 ± 0.1 a | 35 ± 3 a | 23.9 ± 0.6 b | 32.7 ± 0.3 a |
spathulenol | 1576 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.4 ± 0.2 | 0 |
phytol | 1955 | 7.3 ± 0.9 a | 18 ± 2 b | 3.2 ± 0.2 c | 1.2 ± 0.3 d | 0.55 ± 0.05 d | 0.45 ± 0.04 d | 0.6 ± 0.2 d | 0 | 0.7 ± 0.5 d | 0.6 ± 0.2 d | 1.24 ± 0.04 d | 0.55 ± 0.01 d |
monoterpenes | 0.39 ± 0.04 | 0.43 ± 0.01 | 0.40 ± 0.01 | 0.46 ± 0.06 | 0.51 ± 0.02 | 0.42 ± 0.01 | 0.42 ± 0.04 | 0.41 ± 0.03 | 1.76 ± 0.96 | 0.34 ± 0.01 | 0.31 ± 0.19 | 0.38 ± 0.01 | |
sesquiterpenes | 76 ± 3 | 72 ± 3 | 85.9 ± 0.2 | 89.4 ± 0.7 | 88.6 ± 0.6 | 88.7 ± 0.4 | 85 ± 1 | 79.5 ± 0.6 | 84.8 ± 0.5 | 82 ± 1 | 65.0 ± 0.3 | 80.7 ± 0.5 | |
diterpene | 7.3 ± 0.9 | 18 ± 2 | 3.2 ± 0.2 | 1.2 ± 0.3 | 0.55 ± 0.05 | 0.45 ± 0.04 | 0.6 ± 0.2 | 0 | 0.7 ± 0.5 | 0.6 ± 0.2 | 1.24 ± 0.04 | 0.55 ± 0.01 | |
TOTAL | 84 ± 2 | 90 ± 3 | 89.6 ± 0.1 | 91.1 ± 0.6 | 90 ± 1 | 89.6 ± 0.4 | 89 ± 1 | 79.9 ± 0.4 | 86.8 ± 0.3 | 83.7 ± 0.7 | 66.6 ± 0.1 | 82.1 ± 0.3 |
Compound a | KI | Relative amount (%) b |
---|---|---|
o-cymene | 1026 | 0.09 ± 0.01 |
benzene acetaldehyde | 1042 | 0.15 ± 0.02 |
γ-terpinene | 1059 | 0.18 ± 0.06 |
oct-2E-en-1-ol | 1066 | 0.12 ± 0.02 |
dehydrolinalool | 1090 | 0.06 ± 0.01 |
non-3Z-en-1-ol | 1157 | 0.06 ± 0.01 |
terpinen-4-ol | 1177 | 0.09 ± 0.02 |
methyl salicylate | 1191 | 0.12 ± 0.03 |
dec-2E-enal | 1263 | 0.09 ± 0.02 |
geranial | 1267 | 0.18 ± 0.01 |
neryl formate | 1282 | 8.8 ± 0.2 |
geranyl formate | 1298 | 27.3 ± 0.7 |
dimethoxy-Z-citral | 1318 | 0.13 ± 0.05 |
dimethoxy-E-citral | 1341 | 1.26 ± 0.03 |
ethyl nerolate | 1354 | 0.99 ± 0.01 |
Z-α-damascone | 1358 | 0.66 ± 0.02 |
neryl acetate | 1361 | 0.84 ± 0.01 |
α-ylangene | 1375 | 1.14 ± 0.01 |
geranyl acetate | 1381 | 0.51 ± 0.02 |
β-bourbonene | 1388 | 1.12 ± 0.02 |
E-α-damascone | 1393 | 0.75 ± 0.03 |
ethyl geranate | 1395 | 0.21 ± 0.01 |
E-caryophyllene | 1419 | 1.14 ± 0.01 |
β-duprezianene | 1422 | 0.56 ± 0.06 |
neryl acetone | 1436 | 0.50 ± 0.03 |
E-β-farnesene | 1456 | 2.8 ± 0.7 |
γ-muurolene | 1479 | 10.3 ± 0.9 |
α-amorphene | 1484 | 0.63 ± 0.03 |
cis-eudesma-6,11-diene | 1489 | 1.17 ± 0.03 |
α-muurolene | 1500 | 0.69 ± 0.01 |
butylated hydroxytoluene | 1515 | 0.96 ± 0.01 |
δ-cadinene | 1523 | 2.44 ± 0.03 |
trans-cadina-1,4-diene | 1534 | 0.3 ± 0.02 |
α-cadinene | 1538 | 0.40 ± 0.02 |
α-calacorene | 1545 | 0.27 ± 0.01 |
E-nerolidol | 1563 | 1.03 ± 0.05 |
dendrolasin | 1571 | 8.23 ± 0.06 |
globulol | 1590 | 1.08 ± 0.03 |
viridiflorol | 1592 | 0.33 ± 0.01 |
cubeban-11-ol | 1595 | 0.21 ± 0.01 |
geranyl 2-methylbutanoate | 1601 | 0.48 ± 0.01 |
geranyl isovalerate | 1607 | 0.30 ± 0.03 |
5-epi-7-epi-α-eudesmol | 1607 | 0.48 ± 0.02 |
himachalol | 1653 | 0.78 ± 0.01 |
α-cadinol | 1654 | 0.92 ± 0.01 |
E-bisabol-11-ol | 1667 | 0.45 ± 0.02 |
γ-dodelactone | 1677 | 0.8 ± 0.1 |
Z-nerolidyl acetate | 1677 | 0.45 ± 0.01 |
α-bisabolol | 1685 | 0.99 ± 0.07 |
davanol acetate | 1689 | 0.30 ± 0.01 |
2E,6E-farnesol | 1743 | 0.15 ± 0.02 |
β-bisabolenal | 1769 | 0.15 ± 0.01 |
1-octadecene | 1790 | 1.6 ± 0.7 |
n-hexadecanol | 1875 | 1.38 ± 0.01 |
5E,9E-farnesyl acetone | 1913 | 0.18 ± 0.03 |
isophytol | 1947 | 0.30 ± 0.03 |
3Z-cembrene A | 1966 | 0.63 ± 0.01 |
ethyl hexadecanoate | 1993 | 0.54 ± 0.02 |
E,E-geranyl linalool | 2027 | 0.21 ± 0.06 |
manool | 2057 | 0.48 ± 0.04 |
n-octadecanol | 2077 | 0.39 ± 0.02 |
E-phytol acetate | 2218 | 1.14 ± 0.02 |
pentacosane | 2500 | 1.86 ± 0.03 |
hexacosane | 2600 | 6.02 ± 0.06 |
heptacosane | 2700 | 2.13 ± 0.06 |
monoterpenes | 44.8 ± 0.9 | |
sesquiterpenes | 37.1 ± 0.9 | |
diterpenes | 0.51 ± 0.06 | |
hydrocarbons | 10.49 ± 0.06 | |
other compounds | 6.7 ± 0.1 | |
TOTAL | 99.6 ± 0.9 |
Microorganism | Essential oil dosage (mg/mL) | Positive Control |
---|---|---|
Fluconazole (mg/mL) | ||
C. neoformans (serotype A) | 0.50 (80 ± 18%) | 0.013 |
C. neoformans (serotype D) | 0.06 (95 ± 8%) | 0.006 |
C. gattii (serotype B) | 1.00 (98 ± 6%) | 0.025 |
C. gattii (serotype C) | 1.00 (61 ± 1%) * | 0.006 |
3. Experimental
3.1. Chemical Reagents
3.2. Microclimatic Factors
3.3. Plant Material
3.4. Hydro-Distillation of the Essential Oils
3.5. Gas Chromatography Analysis (GC)
3.6. Gas Chromatography- Mass Spectrometry (GC-MS) Analysis
3.7. Microbial Strain Media, Antibiotics and Growth Conditions
3.8. Broth Microdilution Assay for the Determination of Minimum Inhibitory Concentrations (MIC)
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Murray, N.A. Revision of Cymbopetalum and Porcelia (Annonaceae). Syst. Bot. Monogr. 1993, 40, 121–140. [Google Scholar] [CrossRef]
- Chaves, M.H.; Roque, N.F. Acetogenins from Porcelia macrocarpa: Stereochemical determination of 2-alkyl-3-hydroxy-4-methyl γ-lactones by 13C-NMR spectroscopy. Phytochemistry 1997, 44, 523–528. [Google Scholar] [CrossRef]
- Chaves, M.H.; Roque, N.F. Amides and lignanamides from Porcelia macrocarpa. Phytochemistry 1997, 46, 879–881. [Google Scholar] [CrossRef]
- Chaves, M.H.; Santos, L.A.; Lago, J.H.G.; Roque, N.F. Alkaloids from Porcelia macrocarpa. J. Nat. Prod. 2001, 64, 240–242. [Google Scholar] [CrossRef]
- Lago, J.H.G.; Chaves, M.H.; Ayres, M.C.C.; Agripino, D.G.; Young, M.C.M. Evaluation of antifungal and DNA-damaging activities of alkaloids from branches of Porcelia macrocarpa. Planta Med. 2007, 73, 292–295. [Google Scholar] [CrossRef]
- Chaves, M.H.; Freitas, A.; Roque, N.F.; Cavalheiro, A.J. Separação e identificação de constituintes químicos polares dos galhos de Porcelia macrocarpa. Quím. Nova 2000, 23, 307–309. [Google Scholar] [CrossRef]
- Chaves, M.H.; Lago, J.H.G.; Roque, N.F. Macrocarpane, a new sesquiterpene skeleton from the leaves of Porcelia macrocarpa. J. Braz. Chem. Soc. 2003, 14, 16–19. [Google Scholar]
- Silva, E.B.P.; Matsuo, A.L.; Figueiredo, C.R.; Chaves, M.H.; Sartorelli, P.; Lago, J.H.G. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat. Prod. Commun. 2013, 8, 277–279. [Google Scholar]
- Nakatsuo, T.; Lupo, A.T., Jr.; Chinn, J.W., Jr.; Kang, R.K.L. Biological activity of essential oils and their constituents. Bioact. Nat. Prod. 2000, 21, 571–631. [Google Scholar]
- Gobo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quím. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Silva, A.A.C.A.; Souza, E.A.; Matsuo, A.L.; Lago, J.H.G.; Chaves, M.H. Intraspecific variation and cytotoxic evaluation of the essential oils from Oxandra sessiliflora R. E. Fries. J. Med. Plant Res. 2013, 7, 504–508. [Google Scholar]
- Sartorelli, P.; Santana, J.S.; Guadagnin, R.C.; Lago, J.H.G.; Pinto, E.G.; Tempone, A.G.; Stefani, H.A.; Soares, M.G.; Silva, A.M. In vitro trypanocidal evaluation of pinane derivatives from essential oils of ripe fruits from Schinus terebinthifolius Raddi (Anacardiaceae). Quím. Nova 2012, 35, 743–747. [Google Scholar] [CrossRef]
- Bou, D.D.; Lago, J.H.G.; Figueiredo, C.R.; Matsuo, A.L.; Guadagnin, R.C.; Soares, M.G.; Sartorelli, P. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules 2013, 18, 9477–9887. [Google Scholar] [CrossRef] [Green Version]
- Lago, J.H.G.; Carvalho, L.A.C.; da Silva, F.S.; Toyama, D.D.; Favero, O.A.; Romoff, P. Chemical composition and anti-inflammatory evaluation of essential oils from leaves and stem barks from Drimys brasiliensis Miers (Winteraceae). J. Braz. Chem. Soc. 2010, 21, 1760–1765. [Google Scholar] [CrossRef]
- INMET (Brazilian National Institute of Meteorology) Database. Available online: http://www.inmet.gov.br (accessed on 15th September 2012).
- Lakusić, D.; Ristić, M.; Slavkovska, V.; Lakusić, B. Seasonal variations in the composition of the essential oils of rosemary (Rosmarinus officinalis, Lamiaceae). Nat. Prod. Commun. 2013, 8, 131–134. [Google Scholar]
- El-Kashoury, S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A.; Sleem, A.A. Chemical composition and biological activities of the essential oil of Mentha suaveolens Ehrh. Z. Naturforsch. C 2012, 67, 571–579. [Google Scholar] [CrossRef]
- Lakušić, B.; Ristić, M.; Slavkovska, V.; Milenković, M.; Lakušić, D. Environmental and seasonal impacts on the chemical composition of Satureja horvatii Šilić (Lamiaceae) essential oils. Chem. Biodivers. 2011, 8, 483–493. [Google Scholar] [CrossRef]
- Silva, F.G.; Oliveira, C.B.A.; Pinto, J.E.B.P.; Nascimento, V.E.; Santos, S.C.; Seraphin, J.C.; Ferri, P.H. Seasonal variability in the essential oils of wild and cultivated Baccharis trimera. J. Braz. Chem. Soc. 2007, 18, 990–997. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Nascimento, I.A.; Ferreira, G.A.; Cortez, D.A.G. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oils from leaves of Tetradenia riparia (Hochst.) Coddin Southern Brazil. Molecules 2010, 15, 5509–5524. [Google Scholar] [CrossRef]
- Lago, J.H.G.; Fávero, O.A.; Romoff, P. Microclimatic factors and phenology influences in the chemical composition of the essential oils from Pittosporum undulatum Vent leaves. J. Braz. Chem. Soc. 2006, 17, 1334–1338. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2008. [Google Scholar]
- Bülow, N.; König, W.A. The role of germacrene D as a precursor in sesquiterpene biosynthesis: Investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 2000, 55, 141–168. [Google Scholar] [CrossRef]
- Pala-Paul, J.; Perez-Alonso, M.J.; Velasco-Negueruela, A.; Pala-Paul, R.; Sanz, J.; Conejero, F. Seasonal variation in chemical constituents of Santolina rosmarinifolia L. ssp. rosmarinifolia. Biochem. Syst. Ecol. 2001, 29, 663–672. [Google Scholar] [CrossRef]
- Costa, E.V.; Dutra, L.M.; Nogueira, P.C.; Moraes, V.R.; Salvador, M.J.; Ribeiro, L.H.; Gadelha, F.R. Essential oil from the leaves of Annona vepretorum: Chemical composition and bioactivity. Nat. Prod. Commun. 2012, 7, 265–266. [Google Scholar]
- Sousa, O.V.; Del-Vechio-Vieira, G.; Alves, M.S.; Araújo, A.A.; Pinto, M.A.; Amaral, M.P.; Rodarte, M.P.; Kaplan, M.A. Chemical composition and biological activities of the essential oils from Duguetia lanceolata St. Hil. barks. Molecules 2012, 17, 11056–11066. [Google Scholar] [CrossRef]
- Costa, E.V.; Teixeira, S.D.; Marques, F.A.; Duarte, M.C.; Delarmelina, C.; Pinheiro, M.L.; Trigo, J.R.; Sales-Maia, B.H. Chemical composition and antimicrobial activity of the essential oils of the Amazon Guatteriopsis species. Phytochemistry 2008, 69, 1895–1899. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A. In vitro antifungal activities of anidulafungin and micafungin, licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: review of the literature. Rev. Iberoam. Micol. 2003, 20, 121–136. [Google Scholar]
- Lago, J.H.G.; Souza, E.D.; Mariane, B.; Pascon, R.; Vallim, M.A.; Martins, R.C.; Baroli, A.A.; Carvalho, B.A.; Soares, M.G.; dos Santos, R.T.; et al. Chemical and biological evaluation of essential oils from two species of Myrtaceae—Eugenia uniflora L. and Plinia trunciflora (O. Berg) Kausel. Molecules 2011, 16, 9827–9837. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Oliveira, L.G.; Rodrigues, F.F.; Saraiva, M.E.; Almeida, S.C.; Cabral, M.E.; Campos, A.R.; Costa, J.G. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves. Pharmacogn. Res. 2012, 4, 161–165. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Volatile constituents of Origanum vulgare L., ‘thymol’ chemotype: Variability in North India during plant ontogeny. Nat. Prod. Res. 2012, 26, 1358–1362. [Google Scholar] [CrossRef]
- Cordeiro, R.A.; Nogueira, G.C.; Brilhante, R.S.; Teixeira, C.E.; Mourão, C.I.; Castelo-Branco Dde, S.; Paiva, M.A.; Ribeiro, J.F.; Monteiro, A.J.; Sidrim, J.J.; et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet. Microbiol. 2012, 159, 375–380. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Gonçalves, M.J.; Salgueiro, L.; Maxia, A.; Lai, R. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat. Prod. Res. 2010, 24, 569–579. [Google Scholar] [CrossRef]
- Cabral, C.; Gonçalves, M.; Cavaleiro, C.; Sales, F.; Boyom, F.; Salgueiro, L. Composition and anti-fungal activity of the essential oil from Cameroonian Vitex rivularis Gurke. Nat. Prod. Res. 2009, 23, 1478–1484. [Google Scholar] [CrossRef]
- Fontenelle, R.O.; Morais, S.M.; Brito, E.H.; Brilhante, R.S.; Cordeiro, R.A.; Nascimento, N.R.; Kerntopf, M.R.; Sidrim, J.J.; Rocha, M.F. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef]
- Gallori, S.; Bilia, A.R.; Mulinacci, N.; Bicchi, C.; Rubiolo, P.; Vincieri, F.F. Identification of volatile constituents of Tambourissa leptophylla. Planta Med. 2001, 67, 290–292. [Google Scholar] [CrossRef]
- Costa, E.V.; Dutra, L.M.; de Jesus, H.C.; Nogueira, P.C.; Moraes, V.R.; Salvador, M.J.; Cavalcanti, S.C.; dos Santos, R.L.; Prata, A.P. Chemical composition and antioxidant, antimicrobial, and larvicidal activities of the essential oils of Annona salzmannii and A. pickelii (Annonaceae). Nat. Prod. Commun. 2011, 6, 907–912. [Google Scholar]
- Li, S.S.; Mody, C.H. Cryptococcus. Proc. Am. Thorac. Soc. 2010, 7, 186–196. [Google Scholar] [CrossRef]
- Lin, X.; Heitman, J. The biology of the Cryptococcus neoformans species complex. Ann. Rev. Microbiol. 2006, 60, 69–105. [Google Scholar] [CrossRef]
- Sample Availability: Samples of essential oils from leaves and fruits of P. macrocarpa are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Da Silva, E.B.P.; Soares, M.G.; Mariane, B.; Vallim, M.A.; Pascon, R.C.; Sartorelli, P.; Lago, J.H.G. The Seasonal Variation of the Chemical Composition of Essential Oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and Their Antimicrobial Activity. Molecules 2013, 18, 13574-13587. https://doi.org/10.3390/molecules181113574
Da Silva EBP, Soares MG, Mariane B, Vallim MA, Pascon RC, Sartorelli P, Lago JHG. The Seasonal Variation of the Chemical Composition of Essential Oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and Their Antimicrobial Activity. Molecules. 2013; 18(11):13574-13587. https://doi.org/10.3390/molecules181113574
Chicago/Turabian StyleDa Silva, Erica Biolcati P., Marisi G. Soares, Bruna Mariane, Marcelo A. Vallim, Renata C. Pascon, Patricia Sartorelli, and João Henrique G. Lago. 2013. "The Seasonal Variation of the Chemical Composition of Essential Oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and Their Antimicrobial Activity" Molecules 18, no. 11: 13574-13587. https://doi.org/10.3390/molecules181113574
APA StyleDa Silva, E. B. P., Soares, M. G., Mariane, B., Vallim, M. A., Pascon, R. C., Sartorelli, P., & Lago, J. H. G. (2013). The Seasonal Variation of the Chemical Composition of Essential Oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and Their Antimicrobial Activity. Molecules, 18(11), 13574-13587. https://doi.org/10.3390/molecules181113574