Entropy 2006, 8(3), 169-174; doi:10.3390/e8030169
Other

Entropy and Effective Support Size

Department of Mathematics, FPV UMB, Tajovskeho 40, 974 01 Banska Bystrica, Slovakia Institute of Measurement Science, Bratislava, Slovakia Institute of Mathematics and Computer Science, Banska Bystrica, Slovakia
Received: 5 May 2006; Accepted: 10 August 2006 / Published: 21 August 2006
PDF Full-text Download PDF Full-Text [156 KB, uploaded 16 September 2008 11:01 CEST]
Abstract: Notion of Effective size of support (Ess) of a random variable is introduced. A smallset of natural requirements that a measure of Ess should satisfy is presented. The measure withprescribed properties is in a direct (exp-) relationship to the family of R ́nyi’s α-entropies which eincludes also Shannon’s entropy H. Considerations of choice of the value of α imply that exp(H)appears to be the most appropriate measure of Ess.Entropy and Ess can be viewed thanks to their log / exp relationship as two aspects of the samething. In Probability and Statistics the Ess aspect could appear more basic than the entropic one.
Keywords: R´enyi’s entropy; Shannon’s entropy; support; interpretation; Probability; Statistics.

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Grendar, M. Entropy and Effective Support Size. Entropy 2006, 8, 169-174.

AMA Style

Grendar M. Entropy and Effective Support Size. Entropy. 2006; 8(3):169-174.

Chicago/Turabian Style

Grendar, Marian. 2006. "Entropy and Effective Support Size." Entropy 8, no. 3: 169-174.

Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert