Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems
Abstract
:1. Introduction
2. System Model and Schemes
2.1. Inter-Cluster Interference Cancellation
2.2. Computation Complexity
3. Proposed Scheme: Dynamic Clustering and Coordinated User Scheduling
4. Computer Simulation
4.1. Simulation Parameters
| Algorithm 1 Simulation process. | |
| Initialization: | |
| 1: | Set the scheduled UEs per cluster: , | 
| 2: | Set the UEs per cell: | 
| 3: | Set the cells (RUs): | 
| 4: | Set the clusters at the th clustering state: , | 
| Procedure: | |
| 5: | |
| 6: | whiledo | 
| 7: | Determine cluster sets: | 
| 8: | for to M do | 
| 9: | |
| 10: | |
| 11: | end for | 
| 12: | Construct channel matrix: | 
| 13: | |
| 14: | Calculate residual interference term in Equation (18) | 
| 15: | Calculate spectral efficiency in Equation (17) | 
| 16: | |
| 17: | end while | 
| 18: | function() | 
| 19: | Find UEs locating in intra-cluster region | 
| 20: | return x | 
| 21: | end function | 
4.2. Simulation Results: Clustering and Scheduling Effect
- Case 1: All three UEs locate at cluster-edge region.
 - Case 2: Two UEs locate at cluster edge and 1 UE at cluster center regions.
 - Case 3: All three UEs locate at cluster-center region.
 
4.3. Simulation Results: Dynamic Clustering and Inter-Cluster Interference Cancellation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| UHD-DAS | Ultra-High Density Distributed Antenna System | 
| MIMO | Multiple-Input Multiple-Output | 
| MU-MIMO | Multiuser MIMO | 
| Wi-Fi | Wireless Fidelity | 
| WiMAX | Worldwide Interoperability for Microwave Access | 
| LTE | Long Term Evolution | 
| BS | Base Station | 
| UE | User Equipment | 
| CoMP | Coordinated MultiPoint | 
| CU | Central Unit | 
| RU | Radio Unit | 
| ICI | Inter-Cell Interference | 
| ICLI | Inter-Cluster Interference | 
| CSI | Channel State Information | 
| FFR | Fractional Frequency Reuse | 
| AWGN | Additive White Gaussian Noise | 
| SNR | Signal-to-Noise power Ratio | 
| SINR | Signal-to-Interference and Noise power Ratio | 
| CDF | Cumulative Distribution Function | 
References
- Gelabert, X.; Legg, P.; Qvarfordt, C. Small Cell densification requirements in high capacity future cellular networks. In Proceedings of the IEEE International Conference on Communication Workshops (ICCW 2013), Budapest, Hungary, 9–13 June 2013; pp. 1112–1116. [Google Scholar]
 - Feteiha, M.F.; Qutqut, M.H.; Hassanein, H.S. Outage probability analysis of mobile small cells over LTE-A networks. In Proceedings of the IEEE International Wireless Communication and Mobile Computing Conference (IWCMC 2014), Nicosia, Cyprus, 4–8 August 2014; pp. 1045–1050. [Google Scholar]
 - Ge, X.; Tu, S.; Mao, G.; Wang, C.X.; Han, T. 5G ultra-dense cellular networks. IEEE Wirel. Commun. 2016, 23, 72–79. [Google Scholar] [CrossRef]
 - Foschini, G.; Gans, M. On limits of wireless communication in a fading environment when using multiple antennas. Wirel. Pers. Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
 - Spencer, Q.H.; Peel, C.B.; Swindlehurst, A.L.; Haardt, M. An introduction to the multi-user MIMO downlink. IEEE Commun. Mag. 2004, 42, 60–67. [Google Scholar] [CrossRef]
 - Sawahashi, M.; Kishiyama, Y.; Morimoto, A.; Nishikawa, D.; Tanno, M. Coordinated multipoint transmission/reception techniques for LTE-advanced. IEEE Wirel. Commun. 2010, 17, 26–34. [Google Scholar] [CrossRef]
 - Shamai, S.; Zaidel, B.M. Enhancing the cellular downlink capacity via co-processing at the transmitting end. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, 6–9 May 2001; pp. 1745–1749. [Google Scholar]
 - Roh, W.; Paulraj, A. MIMO channel capacity for the distributed antenna. In Proceedings of the IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002; pp. 706–709. [Google Scholar]
 - Chanclou, P.; Neto, L.A.; Grzybowski, K.; Tayq, Z.; Saliou, F.; Genay, N. Mobile fronthaul architecture and technologies: A RAN equipment assessment. J. Opt. Commun. Netw. 2018, 10, A1–A7. [Google Scholar] [CrossRef]
 - Liu, Z.; Zhao, Y.; Wu, H.; Ding, S. Group sparse precoding for Cloud-RAN with multiple user antennas. Entropy 2018, 20, 144. [Google Scholar] [CrossRef]
 - Okuyama, T.; Suyama, S.; Mashino, J.; Okumura, Y. Antenna deployment for 5G ultra high-density distributed antenna system at low SHF bands. In Proceedings of the IEEE Conference on Standards for Communication and Networking (CSCN 2016), Berlin, Germany, 31 October–2 November 2016; pp. 1–6. [Google Scholar]
 - Kumagai, S.; Kobayashi, T.; Jitsukawa, D.; Seyama, T.; Dateki, T.; Seki, H.; Matsuyama, K.; Minowa, M. Scheduler reducing CSI feedback overhead and computational complexity for 5G ultra high-density distributed antenna systems with hybrid BF. In Proceedings of the IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
 - Arikawa, Y.; Sakamoto, T.; Kimura, S. Hardware accelerator for coordinated radioresource scheduling in 5G ultra-high-density distributed antenna systems. In Proceedings of the 27th International Telecommunication Networks and Applications Conference (ITNAC 2017), Melbourne, Australia, 22–24 November 2017; pp. 1–6. [Google Scholar]
 - Maruta, K.; Maruyama, T.; Ohta, A.; Nakatsugawa, M. Inter-cluster interference canceller for multiuser MIMO distributed antenna systems. In Proceedings of the IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communication, Tokyo, Japan, 13–16 September 2009; pp. 3079–3083. [Google Scholar]
 - Maruta, K.; Maruyama, T.; Ohta, A.; Mashino, J.; Nakatsugawa, M. Improving spectral efficiency of multiuser-MIMO Distributed Antenna Systems by inter-cluster interference cancellation. In Proceedings of the 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 7–10 December 2010; pp. 1585–1588. [Google Scholar]
 - Maruta, K.; Ohta, A.; Iizuka, M.; Sugiyama, T. Iterative inter-cluster interference cancellation for cooperative base station systems. In Proceedings of the IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
 - Maruta, K.; Ohta, A.; Iizuka, M.; Sugiyama, T. Applying FFR to inter-cell interference cancellation with quasi-decentralized base station cooperation. In Proceedings of the IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5. [Google Scholar]
 - Maruta, K.; Ohta, A.; Iizuka, M.; Sugiyama, T. Impact of imperfect channel state information on quasi-decentralized cooperative inter-cell interference cancellation with fractional frequency reuse. IEEJ Trans. Electron. Inform. Syst. 2015, 135, 1169–1179. [Google Scholar] [CrossRef]
 - Kusashima, N.; Garcia, I.D.; Sakaguchi, K.; Araki, K.; Kaneko, S.; Kishi, Y. Dynamic fractional base station cooperation using shared distributed remote radio units for advanced cellular networks. IEICE Trans. Commun. 2011, E94-B, 3259–3271. [Google Scholar] [CrossRef]
 - Nishimoto, H.; Kato, S.; Ogawa, Y.; Ohgane, T.; Nishimura, T. Imperfect block diagonalization for multiuser MIMO downlink. In Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communication, Cannes, France, 15–18 September 2008; pp. 1–5. [Google Scholar]
 - Haustein, T.; von Helmolt, C.; Jorswieck, E.; Jungnickel, V.; Pohl, V. Performance of MIMO systems with channel inversion. In Proceedings of the IEEE 55th Vehicular Technology Conference, Birmingham, AL, USA, 6–9 May 2002; pp. 35–39. [Google Scholar]
 - Bandemer, B.; Haardt, M.; Visuri, S. Linear MMSE multi-user mimo downlink precoding for users with multiple antennas. In Proceedings of the IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communication, Helsinki, Finland, 11–14 September 2006; pp. 1–5. [Google Scholar]
 - ITU-R Recommendation M.1225. Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1225-0-199702-I!!PDF-E.pdf (accessed on 30 July 2018).
 








| Parameters | Values | 
|---|---|
| Cell deployment | Hexagonal | 
| Number of UE | 50 per cell | 
| Cell edge SNR | 20 dB | 
| Cluster Size C | 3 | 
| Reuse Factor | 1 | 
| Inter-cluster interference cancellation order | 1, 3 | 
| MU-MIMO transmission weight | Gram–Schmidt orthogonalization [20] | 
| Carrier frequency | 2 GHz | 
| Propagation model | ITU-R M.1225 Pedestrian B [23] 40.1log (d [m])+39 dB  | 
| Fading model | i.i.d Rayleigh | 
| RU/UE antenna | Single, Omni directional | 
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruta, K. Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems. Entropy 2018, 20, 616. https://doi.org/10.3390/e20080616
Maruta K. Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems. Entropy. 2018; 20(8):616. https://doi.org/10.3390/e20080616
Chicago/Turabian StyleMaruta, Kazuki. 2018. "Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems" Entropy 20, no. 8: 616. https://doi.org/10.3390/e20080616
APA StyleMaruta, K. (2018). Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems. Entropy, 20(8), 616. https://doi.org/10.3390/e20080616
        
