Entropy 2000, 2(1), 1-25; doi:10.3390/e2010001
Article

Emergence and Dissolvence in the Self-organisation of Complex Systems

1 School of Pharmacy, University of Lausanne, CH-1015 Lausanne, Switzerland 2 Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
* Author to whom correspondence should be addressed.
Received: 21 November 1999; Accepted: 28 January 2000 / Published: 4 February 2000
PDF Full-text Download PDF Full-Text [138 KB, uploaded 16 September 2008 11:01 CEST]
Abstract: The formation of complex systems is accompanied by the emergence of properties that are non-existent in the components. But what of the properties and behaviour of such components caught up in the formation of a system of a higher level of complexity? In this assay, we use a large variety of examples, from molecules to organisms and beyond, to show that systems merging into a complex system of higher order experience constraints with a partial loss of choice, options and independence. In other words, emergence in a complex system often implies reduction in the number of probable states of its components, a phenomenon we term dissolvence. This is seen in atoms when they merge to form molecules, in biomolecules when they form macromolecules such as proteins, and in macromolecules when they form aggregates such as molecular machines or membranes. At higher biological levels, dissolvence occurs for example in components of cells (e.g. organelles), tissues (cells), organs (tissues), organisms (organs) and societies (individuals). Far from being a destruction, dissolvence is understood here as a creative process in which information is generated to fuel the process of self-organisation of complex systems, allowing them to appear and evolve to higher states of organisation and emergence. Questions are raised about the relationship of dissolvence and adaptability; the interrelation with top-down causation; the reversibility of dissolvence; and the connection between dissolvence and anticipation.
Keywords: property space; emergent properties; dissolvence; information; self-organisation; complex systems; complexity

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Testa, B.; Kier, L.B. Emergence and Dissolvence in the Self-organisation of Complex Systems. Entropy 2000, 2, 1-25.

AMA Style

Testa B, Kier LB. Emergence and Dissolvence in the Self-organisation of Complex Systems. Entropy. 2000; 2(1):1-25.

Chicago/Turabian Style

Testa, Bernard; Kier, Lemont B. 2000. "Emergence and Dissolvence in the Self-organisation of Complex Systems." Entropy 2, no. 1: 1-25.

Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert