Next Article in Journal
Brownian Dynamics Computational Model of Protein Diffusion in Crowded Media with Dextran Macromolecules as Obstacles
Next Article in Special Issue
Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis
Previous Article in Journal
Complexity and Vulnerability Analysis of the C. Elegans Gap Junction Connectome
Previous Article in Special Issue
Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators with New Fractional Differentiation
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Entropy 2017, 19(3), 101; doi:10.3390/e19030101

“Over-Learning” Phenomenon of Wavelet Neural Networks in Remote Sensing Image Classifications with Different Entropy Error Functions

1
School of Geosciences, China University of Petroleum, Qingdao 266580, China
2
Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
3
The First Institute of Geodetic Surveying, NASG, Xi’an 710054, China
4
State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
*
Author to whom correspondence should be addressed.
Academic Editor: Carlo Cattani
Received: 14 November 2016 / Revised: 27 February 2017 / Accepted: 27 February 2017 / Published: 8 March 2017
(This article belongs to the Special Issue Wavelets, Fractals and Information Theory II)
View Full-Text   |   Download PDF [8692 KB, uploaded 8 March 2017]   |  

Abstract

Artificial neural networks are widely applied for prediction, function simulation, and data classification. Among these applications, the wavelet neural network is widely used in image classification problems due to its advantages of high approximation capabilities, fault-tolerant capabilities, learning capacity, its ability to effectively overcome local minimization issues, and so on. The error function of a network is critical to determine the convergence, stability, and classification accuracy of a neural network. The selection of the error function directly determines the network’s performance. Different error functions will correspond with different minimum error values in training samples. With the decrease of network errors, the accuracy of the image classification is increased. However, if the image classification accuracy is difficult to improve upon, or is even decreased with the decreasing of the errors, then this indicates that the network has an “over-learning” phenomenon, which is closely related to the selection of the function errors. With regards to remote sensing data, it has not yet been reported whether there have been studies conducted regarding the “over-learning” phenomenon, as well as the relationship between the “over-learning” phenomenon and error functions. This study takes SAR, hyper-spectral, high-resolution, and multi-spectral images as data sources, in order to comprehensively and systematically analyze the possibility of an “over-learning” phenomenon in the remote sensing images from the aspects of image characteristics and neural network. Then, this study discusses the impact of three typical entropy error functions (NB, CE, and SH) on the “over-learning” phenomenon of a network. The experimental results show that the “over-learning” phenomenon may be caused only when there is a strong separability between the ground features, a low image complexity, a small image size, and a large number of hidden nodes. The SH entropy error function in that case will show a good “over-learning” resistance ability. However, for remote sensing image classification, the “over-learning” phenomenon will not be easily caused in most cases, due to the complexity of the image itself, and the diversity of the ground features. In that case, the NB and CE entropy error network mainly show a good stability. Therefore, a blind selection of a SH entropy error function with a high “over-learning” resistance ability from the wavelet neural network classification of the remote sensing image will only decrease the classification accuracy of the remote sensing image. It is therefore recommended to use an NB or CE entropy error function with a stable learning effect. View Full-Text
Keywords: wavelet neural network; remote sensing image classification; over-learning; entropy error function wavelet neural network; remote sensing image classification; over-learning; entropy error function
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Song, D.; Zhang, Y.; Shan, X.; Cui, J.; Wu, H. “Over-Learning” Phenomenon of Wavelet Neural Networks in Remote Sensing Image Classifications with Different Entropy Error Functions. Entropy 2017, 19, 101.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top