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et al, that are peptide hydrogels to show controlled delivery of cyclic dinucleotides (CDns). Dramatic
improvement in survival was observed in murine models of head and neck cancer in comparison to
CDN alone or CDN delivered from a collagen hydrogel [61].

Thyroid cancer treatment using local drug delivery system formed of glycol chitosan (GC)
hydrogel and doxorubicin hydrochloride (DOX•HCl) called GC10/dox has been recently developed
(Figure 7). Visible light regulated the storage and swelling aspects of the hydrogel and a controlled
sustained release followed the initial burst release within 18hours. Potent antitumor effects were
observed in vivo and in vitro in comparison to free DOX•HCl and this is a promising research direction
for thyroid cancer therapy [62].

Figure 7. To glycol chitosan solution glycidyl methacrylate (GM) was added in water (adjusted to
pH 9) and maintained for 2 days at room temperature. The white solid conjugate of GM was dissolved
in water and riboflavin added. DOX•HCl was added and the mixture was irradiated using blue
visible light (430–485 nm, 2100 mW/cm2) for 10 minutes in order to promote hydrogelation (reprinted
with permission from [62]; the article is open access and the content reusable. Creative Commons
International License 4.0 for the article is available in https://creativecommons.org/licenses/by/4.0/).

Injectable hydrogels responsive to Reactive Oxygen Species that degrade in the presence of ROS
and promote immunogenic tumor phenotype via local gemcitabine delivery is a recent discovery.
The PVA cross-linked hydrogel with ROS-labile linkers enhance anti-tumor response with a localized
release of immune checkpoint blocking antibody (anti-PD-L1 blocking antibody (aPDL-1) in in vitro
and immunogenic in vivo mouse models. Tumor recurrence prevention after primary resection is the
therapeutic advantage of this chemo-immunotherapy [63].

5. Translation to the Clinic

With enormous potential for therapeutic applications, several hydrogel formulations have crossed
the barriers of in vitro/pre-clinical studies and found their way into the market. Some of them are
still in the clinical study phases. Hydrogels have evolved over time to one of the best and the most
versatile drug delivery platforms. Table 2 lists the widespread practical applications of the hydrogel
concept that have been translated to the clinical level.
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Table 2. Examples of hydrogels translated to clinical use [64–68].

Product Type of Hydrogel Therapeutic Application Drug Delivered

Sericin Dextran
Optically trackable drug

delivery system for malignant
melanoma

Doxorubicin

Hyalofemme/
Hyalo Gyn

Carbomer propylene glycol,
Hyaluronic acid derivative

Vaginal dryness, estrogen
alternative

Hyaluronic acid derivative

Dextenza Polyethylene glycol
Intra-canalicular delivery for

post-operative ophthalmic care
Dexamethasone

Regranex Carboxymethyl cellulose Diabetic foot ulcer
Recombinant human platelet

derived growth factor

muGard Mucoadhesive Oral lichen planus

2% Poloxamer Cervical cancer recurrence Carboplatin

6. Conclusions

Hydrogels offer a versatile platform for the therapy of several diseases including cancer and
diabetes. The water-loving nature of hydrogels and the ability to shrink and swell depending on
several environmental cues or the mere presence of water is attractive for drug delivery applications.
They have a high degree of porosity and the polymers building them could be cross-linked to varying
degrees by adjusting their densities. With a physical structure highly amenable to modification in
several ways, the hydrogel applications are not just limited to targeted drug delivery. They also find
applications in hygiene products, wound dressings, contact lenses and tissue engineering.

Recent developments of hydrogels in the field of targeted drug delivery have been tremendous.
They are modified with targeting ligands and diverse polymer types that confer very interesting
properties on them for drug delivery. Ophthalmic drug delivery is an area seeing significant impact
in therapy from hydrogels. From comfortable contact lenses to biodegradable drug delivery the
applications in eye care have been enormous. They are 90% water, provide steady state drug release
over days or months, deliver small molecules or large proteins, are fully absorbed in delivery and
remain visible during monitoring [51].

Noteworthy is the application of pH responsive hydrogels for cancer therapy and glucose
responsive hydrogels for diabetes. The use of modified stem cell membranes for targeted delivery is a
very recent and attractive strategy for drug delivery. These membranes coated on hydrogels (nanogels)
loaded with drugs are highly specific to the disease site in cancer and are highly bio-compatible.

Immunotherapy platforms using hydrogels are very significant in cancer therapy. Hydrogels
enabling localized delivery of antibodies and other immune-regulatory molecules at cancer sites are
promising drug delivery vehicles for cancer therapy. Gastro-retentive drug dosage forms (GRDDFs)
are versatile drug delivery platforms for intestine and they offer the advantages of adjusting the
nanoparticle size to facilitate retention of the active ingredient in the GI tract for as long as required.

Though the hydrogel-based drug delivery was originally influenced by the hydrophobicity of
the drugs, several improvements have been made recently including development of cyclodextrins
modified to accommodate the hydrophobic drug sufficiently. Adhesive and conductive patches
developed using hydrogels are useful in cardiac repair and vascularization. Remotely controlled
motility of hydrogel (mimicking motion of a magbot) and the QD DNA hydrogels are novel ideas to
facilitate targeted drug delivery.

As discussed in the paper, though there are several hydrogel formulations in clinical use, there
is always scope for improvement and modification of hydrogels to enhance their applications. With
subtle modifications to the existing ones, the hydrogels could become superlative drug delivery
vehicles surpassing the disadvantages and current limitations with the use of several conventional
delivery forms and provide promising results for therapy of several illnesses.
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