Reprint

Glioblastoma: State of the Art and Future Perspectives

Edited by
July 2020
784 pages
  • ISBN978-3-03928-260-9 (Hardback)
  • ISBN978-3-03928-261-6 (PDF)

This book is a reprint of the Special Issue Glioblastoma: State of the Art and Future Perspectives that was published in

Biology & Life Sciences
Medicine & Pharmacology
Summary

Glioblastoma is an aggressive incurable primary tumor of the central nervous system. Median overall survival is in the range of 1.5 years even in selected clinical trials populations. Many features contribute to this therapeutic challenge including high intratumoral and intertumoral heterogeneity, resistance to therapy, migration and invasion, immunosuppression. With the access of novel highthroughput technologies, significant progress has been made to understand molecular and immunological signatures underlying the pathology of glioblastoma. Clinical trial designs have shifted from investigating broad “one-for-all” treatment approaches to precision oncology designs. The collection of contributions in this book aim at providing researchers and clinicians an update on different aspects of glioblastoma, i.e. progress in basic, preclinical and clinical research.

Format
  • Hardback
License
© 2020 by the authors; CC BY-NC-ND license
Keywords
glioblastoma; microRNAs; mouse model; cell proliferation; cancer; cold atmospheric plasma (CAP); spheroid shrinkage; cytotoxicity; tumour reduction; glioblastoma; short-lived reactive species; cell migration; proliferation; glioblastoma; migration; microRNAs; MAP2K4; EGFR; glioblastoma; glioma; pulmonary adenocarcinoma; lung cancer; erlotinib; gefitinib; lapatinib; glioblastoma; β-catenin; cancer stem cell; 4-AAQB; chemoresistance; prognosis; survival; immunotherapy; oncolytic virotherapy; temozolomide; targeted drugs; glioma; dendritic cell vaccine; radiotherapy; TTFields; PD-L1; bevacizumab; EphA3; antibody drug conjugate; radioimmunotherapy; glioblastoma; stem cells; glioblastoma; microenvironment; niche; pericytes; reactive astrocytes; Glioblastoma; cancer stem cells; new cell line; sodium selenite; xenograft; cell death; epigenetics; glioblastoma; temozolomide; mifepristone; MGMT; drug resistance; apoptosis; glioblastoma; epilepsy; translational research; GSEA; tissue microarrays; hypoxia; HIF-1α; STAT5b; mesenchymal transformation; deep learning; discovery; glioblastoma; glioblastoma stem cells; survival prediction; glioblastoma; magnetic resonance imaging; angiogenesis; biomarker; survival; NOTCH; glioma initiating cell; PTEN; PI3K pathway; glioblastoma; Glioblastoma; isocitrate dehydrogenase 1 (IDH1)-wildtype; subventricular zone; survival; multifocal growth; distant recurrence; glioblastoma; protein kinase A; Sonic Hedgehog; Akt; PTEN; VIP-receptor system; glioblastoma; cholesterol; liver X receptor (LXR); brain; liver; metabolism; blood–brain barrier; low-density lipoprotein receptor (LDLR); sterol regulatory element binding protein (SREBP); [11C]-methyl-l-methionine (MET); O-(2-[18F]-fluoroethyl)-l-tyrosine (FET); 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (FDOPA); magnetic resonance spectroscopy; perfusion-weighted imaging; diffusion-weighted imaging; chemical exchange saturation transfer; brain tumors; high-grade glioma; hybrid PET/MRI scanner; cancer stem cells; ER stress; glioblastoma multiforme; radiation; unfolded protein response; autophagy; glioblastoma; GBM; tumor treating fields; TTF; impact factor; machine learning; neuro-oncology; regression analysis; trend prediction; text-mining; oncolytic virotherapy; cancer immunotherapy; glioblastoma; glioblastoma; intratumoural heterogeneity; tumour resistance; personalised therapy; targeted therapy; combination therapy; drug screens; circular RNA; hsa_circ_0001445; RNA binding proteins; alternative splicing; glioblastoma multiforme; angiogenesis; VEGFA; glioblastoma; oncolytic virus; mathematical model; bortezomib; ER stress; apoptosis; CSPG; nitric oxide (NO); inducible nitric oxide synthase (iNOS); photodynamic therapy (PDT); glioblastoma PDT; NO-mediated PDT resistance; protein phosphatase; glioblastoma; signaling; therapy; glioblastoma; radiotherapy; CXCL12; glioblastoma; GSCs; Notch signaling pathway; new therapeutic approaches; autophagy; epithelial-to-mesenchymal transition (EMT); glioblastoma (GBM); cadherins; Wnt/β-catenin signalling; glioblastoma; elderly; surgery; radiotherapy; chemotherapy; temozolomide; cancer stem cells; glioblastoma; Hedgehog; Notch; DNA damage; cancer stem cell; endoplasmic reticulum stress; glioblastoma multiforme; unfolded protein response; curcumin; bis-chalcones; brain tumor; glioblastoma stem cell; glioblastoma; ephrin system; glioma stem like cells; allergy; glioma; GBM; IgE; IL-4; mast cells; glioma; macropinocytosis; methuosis; honokiol; vacquinol-1; MOMIPP; temozolomide; glioblastoma; lentiviral vectors; gene therapy; animal models; pre-clinical; research models; 3D models; brain tumors; cancer stem cells; glioblastoma; DNA damage response (DDR); glioblastoma; subventricular zone; neural stem cells; neurogenesis; brain tumor stem cells; therapy; vimentin; GSK-3; glioblastoma; motility; cytoskeleton; ionotropic glutamate receptors; DNA repair; CREB inhibitor; NMDAR subunit GluN2B; radiotherapy; LN229; U-87MG; memantine; ifenprodil; sulfasalazine; glioblastoma multiforme; platelet; immune cell interaction; sphingosine-1-phosphate; isocitrate dehydrogenase 1; IDH1; IDH1R132H; glioma; glioblastoma; cell stiffness; atomic force microscopy; n/a; boron neutron capture therapy; glioma stem cell; boronophenylalanine; mass cytometry