17 pages, 1275 KiB  
Review
The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks
by Apfrida Kendek, Marieke R. Wensveen and Aniek Janssen
Genes 2021, 12(9), 1415; https://doi.org/10.3390/genes12091415 - 15 Sep 2021
Cited by 7 | Viewed by 4546
Abstract
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate [...] Read more.
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability. Full article
(This article belongs to the Special Issue DNA Damage Response Mechanisms in Model Systems)
Show Figures

Figure 1

11 pages, 1644 KiB  
Article
Investigation and Management of Apparently Sporadic Central Nervous System Haemangioblastoma for Evidence of Von Hippel–Lindau Disease
by Hugh Furness, Louay Salfity, Johanna Devereux, Dorothy Halliday, Helen Hanson, Deborah M. Ruddy, UK VHL Study Group, Neha Shah, George Sultana, Emma R. Woodward, Richard N. Sandford, Katie M. Snape and Eamonn R. Maher
Genes 2021, 12(9), 1414; https://doi.org/10.3390/genes12091414 - 15 Sep 2021
Cited by 6 | Viewed by 2636
Abstract
Haemangioblastomas are rare, highly vascularised tumours that typically occur in the cerebellum, brain stem and spinal cord. Up to a third of individuals with a haemangioblastoma will have von Hippel–Lindau (VHL) disease. Individuals with haemangioblastoma and underlying VHL disease present, on average, at [...] Read more.
Haemangioblastomas are rare, highly vascularised tumours that typically occur in the cerebellum, brain stem and spinal cord. Up to a third of individuals with a haemangioblastoma will have von Hippel–Lindau (VHL) disease. Individuals with haemangioblastoma and underlying VHL disease present, on average, at a younger age and frequently have a personal or family history of VHL disease-related tumours (e.g., retinal or central nervous system (CNS) haemangioblastomas, renal cell carcinoma, phaeochromocytoma). However, a subset present an apparently sporadic haemangioblastoma without other features of VHL disease. To detect such individuals, it has been recommended that genetic testing and clinical/radiological assessment for VHL disease should be offered to patients with a haemangioblastoma. To assess “real-world” clinical practice, we undertook a national survey of clinical genetics centres. All participating centres responded that they would offer genetic testing and a comprehensive assessment (ophthalmological examination and CNS and abdominal imaging) to a patient presenting with a CNS haemangioblastoma. However, for individuals who tested negative, there was variability in practice with regard to the need for continued follow-up. We then reviewed the results of follow-up surveillance in 91 such individuals seen at four centres. The risk of developing a potential VHL-related tumour (haemangioblastoma or RCC) was estimated at 10.8% at 10 years follow-up. The risks of developing a recurrent haemangioblastoma were higher in those who presented <40 years of age. In the light of these and previous findings, we propose an age-stratified protocol for surveillance of VHL-related tumours in individuals with apparently isolated haemangioblastoma. Full article
(This article belongs to the Special Issue Genetics of Inherited Kidney Cancer)
Show Figures

Figure 1

11 pages, 528 KiB  
Article
Familial Hypercholesterolemia Genetic Variations and Long-Term Cardiovascular Outcomes in Patients with Hypercholesterolemia Who Underwent Coronary Angiography
by Wen-Jane Lee, Han-Ni Chuang, Yi-Ming Chen, Kae-Woei Liang, Hsin Tung, Jun-Peng Chen, I-Te Lee, Jun-Sing Wang, Ching-Heng Lin, Hsueh-Ju Lin, Wayne Huey-Herng Sheu, Wen-Lieng Lee and Tzu-Hung Hsiao
Genes 2021, 12(9), 1413; https://doi.org/10.3390/genes12091413 - 14 Sep 2021
Cited by 4 | Viewed by 4142
Abstract
Background: Familial hypercholesterolemia (FH) has been associated with early coronary artery disease (CAD) and increased risk of atherosclerotic cardiovascular disease. However, the prevalence of FH and its long-term outcomes in a CAD-high-risk cohort, defined as patients with hypercholesteremia who underwent coronary angiography, remains [...] Read more.
Background: Familial hypercholesterolemia (FH) has been associated with early coronary artery disease (CAD) and increased risk of atherosclerotic cardiovascular disease. However, the prevalence of FH and its long-term outcomes in a CAD-high-risk cohort, defined as patients with hypercholesteremia who underwent coronary angiography, remains unknown. Besides, studies regarding the impact of genetic variations in FH on long-term cardiovascular (CV) outcomes are scarce. Methods and Results: In total, 285 patients hospitalized for coronary angiography with blood low-density lipoprotein cholesterol (LDL-C) levels ≥ 160 mg/dL were sequenced to detect FH genetic variations in LDL receptors apolipoprotein B and proprotein convertase subtilisin/kexin type 9. Risk factors associated with long-term CV outcomes were evaluated. The prevalence of FH was high (14.4%). CAD and early CAD were significantly more prevalent among FH variation carriers than non-carriers, despite comparable blood LDL-C levels. Moreover, the FH variation carriers also underwent more revascularization after a mean follow-up of 6.1 years. Multivariate logistic regression demonstrated that FH genetic variation was associated with increased incidence of cardiovascular disease and mortality (odds ratio = 3.17, p = 0.047). Two common FH variants, LDLR c.986G>A and LDLR c.268G>A, showed the most significant impacts on high blood LDL-C levels and early-onset CAD. Conclusions: Our results indicate that FH genetic variants may exhibit differential effects on early-onset CAD and revascularization risks in patients undergoing coronary angiography. FH genetic information might help identify high-risk patients with typical CAD symptoms for appropriate intervention. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
DNA Intercalators Inhibit Eukaryotic Ribosomal RNA Synthesis by Impairing the Initiation of Transcription
by William J. Andrews, Swagat Ray, Tatiana Panova, Christoph Engel and Konstantin I. Panov
Genes 2021, 12(9), 1412; https://doi.org/10.3390/genes12091412 - 14 Sep 2021
Cited by 12 | Viewed by 4587
Abstract
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in [...] Read more.
In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription. To test this hypothesis, we investigated the effect of a number of compounds on Pol-I transcription in vitro and in cells. We find that intercalators/groove binders are potent inhibitors of Pol-I specific transcription both in vitro and in cells, regardless of their specificity and the strength of its interaction with DNA. Importantly, the synthetic ability of Pol-I is unaffected, suggesting that these compounds are not targeting post-initiating events. Notably, the tested compounds have limited effect on transcription by Pol-II and III, demonstrating the hypersensitivity of Pol-I transcription. We propose that stability of pre-initiation complex and initiation are affected as result of altered 3D architecture of the rDNA promoter, which is well in line with the recently reported importance of biophysical rDNA promoter properties on initiation complex formation in the yeast system. Full article
Show Figures

Figure 1

3 pages, 174 KiB  
Editorial
Ancient and Archaic Genomes
by Stefania Vai, Martina Lari and David Caramelli
Genes 2021, 12(9), 1411; https://doi.org/10.3390/genes12091411 - 13 Sep 2021
Viewed by 2374
Abstract
The first data obtained from ancient DNA samples were published more than thirty years ago [...] Full article
(This article belongs to the Special Issue Ancient and Archaic Genomes)
18 pages, 1758 KiB  
Review
Advances in Gene Editing of Haploid Tissues in Crops
by Pankaj Bhowmik and Andriy Bilichak
Genes 2021, 12(9), 1410; https://doi.org/10.3390/genes12091410 - 13 Sep 2021
Cited by 10 | Viewed by 5861
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop’s genome are needed. Doubled haploid (DH) methods [...] Read more.
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop’s genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops. Full article
(This article belongs to the Special Issue New Ways for Plant Genome Editing)
Show Figures

Figure 1

13 pages, 1352 KiB  
Review
Histone Acetylation Changes in Plant Response to Drought Stress
by Shuang Li, Xu He, Yuan Gao, Chenguang Zhou, Vincent L. Chiang and Wei Li
Genes 2021, 12(9), 1409; https://doi.org/10.3390/genes12091409 - 13 Sep 2021
Cited by 50 | Viewed by 5353
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing [...] Read more.
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Changes in Plant Response to Abiotic Stress)
Show Figures

Figure 1

13 pages, 604 KiB  
Article
Years of Schooling Could Reduce Epigenetic Aging: A Study of a Mexican Cohort
by Juan Carlos Gomez-Verjan, Marcelino Esparza-Aguilar, Verónica Martín-Martín, Cecilia Salazar-Perez, Cinthya Cadena-Trejo, Luis Miguel Gutierrez-Robledo, José Jaime Martínez-Magaña, Humberto Nicolini and Pedro Arroyo
Genes 2021, 12(9), 1408; https://doi.org/10.3390/genes12091408 - 13 Sep 2021
Cited by 10 | Viewed by 3163
Abstract
Adverse conditions in early life, including environmental, biological and social influences, are risk factors for ill-health during aging and the onset of age-related disorders. In this context, the recent field of social epigenetics offers a valuable method for establishing the relationships among them [...] Read more.
Adverse conditions in early life, including environmental, biological and social influences, are risk factors for ill-health during aging and the onset of age-related disorders. In this context, the recent field of social epigenetics offers a valuable method for establishing the relationships among them However, current clinical studies on environmental changes and lifespan disorders are limited. In this sense, the Tlaltizapan (Mexico) cohort, who 52 years ago was exposed to infant malnutrition, low income and poor hygiene conditions, represents a vital source for exploring such factors. Therefore, in the present study, 52 years later, we aimed to explore differences in clinical/biochemical/anthropometric and epigenetic (DNA methylation) variables between individuals from such a cohort, in comparison with an urban-raised sample. Interestingly, only cholesterol levels showed significant differences between the cohorts. On the other hand, individuals from the Tlaltizapan cohort with more years of schooling had a lower epigenetic age in the Horvath (p-value = 0.0225) and PhenoAge (p-value = 0.0353) clocks, compared to those with lower-level schooling. Our analysis indicates 12 differentially methylated sites associated with the PI3-Akt signaling pathway and galactose metabolism in individuals with different durations of schooling. In conclusion, our results suggest that longer durations of schooling could promote DNA methylation changes that may reduce epigenetic age; nevertheless, further studies are needed. Full article
(This article belongs to the Special Issue Nutrigenomics and Cellular Metabolism)
Show Figures

Figure 1

22 pages, 1475 KiB  
Article
Common and Unique Genetic Background between Attention-Deficit/Hyperactivity Disorder and Excessive Body Weight
by Monika Dmitrzak-Weglarz, Elzbieta Paszynska, Karolina Bilska, Paula Szczesniewska, Ewa Bryl, Joanna Duda, Agata Dutkiewicz, Marta Tyszkiewicz-Nwafor, Piotr Czerski, Tomasz Hanc and Agnieszka Slopien
Genes 2021, 12(9), 1407; https://doi.org/10.3390/genes12091407 - 13 Sep 2021
Cited by 9 | Viewed by 4408
Abstract
Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted [...] Read more.
Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted of 743 Polish children aged between 6 and 17 years. We analyzed a unique set of genes and polymorphisms selected for ADHD and/or obesity based on gene prioritization tools. Polymorphisms in the KCNIP1, SLC1A3, MTHFR, ADRA2A, and SLC6A2 genes proved to be associated with the risk of ADHD in the studied population. The COMT gene polymorphism was one that specifically increased the risk of EBW in the ADHD group. Using the whole-exome sequencing technique, we have shown that the ADHD group contains rare and protein-truncating variants in the FBXL17, DBH, MTHFR, PCDH7, RSPH3, SPTBN1, and TNRC6C genes. In turn, variants in the ADRA2A, DYNC1H1, MAP1A, SEMA6D, and ZNF536 genes were specific for ADHD with EBW. In this way, we confirmed, at the molecular level, the existence of genes specifically predisposing to EBW in ADHD patients, which are associated with the biological pathways involved in the regulation of the reward system, intestinal microbiome, and muscle metabolism. Full article
(This article belongs to the Special Issue Advances in Genetics of Psychiatric Disorders)
Show Figures

Figure 1

14 pages, 1424 KiB  
Case Report
A Rare Case of Brachyolmia with Amelogenesis Imperfecta Caused by a New Pathogenic Splicing Variant in LTBP3
by Elisabetta Flex, Valentina Imperatore, Giovanna Carpentieri, Alessandro Bruselles, Andrea Ciolfi, Simone Pizzi, Maria Giovanna Tedesco, Daniela Rogaia, Amedea Mencarelli, Giuseppe Di Cara, Alberto Verrotti, Stefania Troiani, Giuseppe Merla, Marco Tartaglia and Paolo Prontera
Genes 2021, 12(9), 1406; https://doi.org/10.3390/genes12091406 - 12 Sep 2021
Cited by 3 | Viewed by 3395
Abstract
In recent years, a rare form of autosomal recessive brachyolmia associated with amelogenesis imperfecta (AI) has been described as a novel nosologic entity. This disorder is characterized by skeletal dysplasia (e.g., platyspondyly, short trunk, scoliosis, broad ilia, elongated femoral necks with coxa valga) [...] Read more.
In recent years, a rare form of autosomal recessive brachyolmia associated with amelogenesis imperfecta (AI) has been described as a novel nosologic entity. This disorder is characterized by skeletal dysplasia (e.g., platyspondyly, short trunk, scoliosis, broad ilia, elongated femoral necks with coxa valga) and severe enamel and dental anomalies. Pathogenic variants in the latent transforming growth factor-β binding protein 3 (LTBP3) gene have been found implicated in the pathogenesis of this disorder. So far, biallelic pathogenic LTBP3 variants have been identified in less than 10 families. We here report a young boy born from consanguineous parents with a complex phenotype including skeletal dysplasia associated with aortic stenosis, hypertrophic cardiomyopathy, hypodontia and amelogenesis imperfecta caused by a previously unreported homozygous LTBP3 splice site variant. We also compare the genotypes and phenotypes of patients reported to date. This work provides further evidence that brachyolmia with amelogenesis imperfecta is a distinct nosologic entity and that variations in LTBP3 are involved in its pathogenesis. Full article
Show Figures

Figure 1

11 pages, 297 KiB  
Review
The Role of De Novo Variants in Patients with Congenital Diaphragmatic Hernia
by Charlotte Bendixen and Heiko Reutter
Genes 2021, 12(9), 1405; https://doi.org/10.3390/genes12091405 - 11 Sep 2021
Cited by 6 | Viewed by 2932
Abstract
The genetic etiology of congenital diaphragmatic hernia (CDH), a common and severe birth defect, is still incompletely understood. Chromosomal aneuploidies, copy number variations (CNVs), and variants in a large panel of CDH-associated genes, both de novo and inherited, have been described. Due to [...] Read more.
The genetic etiology of congenital diaphragmatic hernia (CDH), a common and severe birth defect, is still incompletely understood. Chromosomal aneuploidies, copy number variations (CNVs), and variants in a large panel of CDH-associated genes, both de novo and inherited, have been described. Due to impaired reproductive fitness, especially of syndromic CDH patients, and still significant mortality rates, the contribution of de novo variants to the genetic background of CDH is assumed to be high. This assumption is supported by the relatively low recurrence rate among siblings. Advantages in high-throughput genome-wide genotyping and sequencing methods have recently facilitated the detection of de novo variants in CDH. This review gives an overview of the known de novo disease-causing variants in CDH patients. Full article
(This article belongs to the Special Issue De novo Mutations and the Lack of Heritability in Birth Defects)
15 pages, 1332 KiB  
Article
The Phenotypic Spectrum of Patients with PHARC Syndrome Due to Variants in ABHD12: An Ophthalmic Perspective
by Xuan-Thanh-An Nguyen, Hind Almushattat, Ine Strubbe, Michalis Georgiou, Catherina H. Z. Li, Mary J. van Schooneveld, Inge Joniau, Elfride De Baere, Ralph J. Florijn, Arthur A. Bergen, Carel B. Hoyng, Michel Michaelides, Bart P. Leroy and Camiel J. F. Boon
Genes 2021, 12(9), 1404; https://doi.org/10.3390/genes12091404 - 11 Sep 2021
Cited by 13 | Viewed by 3779
Abstract
This study investigated the phenotypic spectrum of PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and early-onset cataract) syndrome caused by biallelic variants in the ABHD12 gene. A total of 15 patients from 12 different families were included, with a mean age of 36.7 [...] Read more.
This study investigated the phenotypic spectrum of PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and early-onset cataract) syndrome caused by biallelic variants in the ABHD12 gene. A total of 15 patients from 12 different families were included, with a mean age of 36.7 years (standard deviation [SD] ± 11.0; range from 17.5 to 53.9) at the most recent examination. The presence and onset of neurological, audiological and ophthalmic symptoms were variable, with no evident order of symptom appearance. The mean best-corrected visual acuity was 1.1 logMAR (SD ± 0.9; range from 0.1 to 2.8; equivalent to 20/250 Snellen) and showed a trend of progressive decline. Different types of cataract were observed in 13 out of 15 patients (87%), which also included congenital forms of cataract. Fundus examination revealed macular involvement in all patients, ranging from alterations of the retinal pigment epithelium to macular atrophy. Intraretinal spicular hyperpigmentation was observed in 7 out of 15 patients (47%). From an ophthalmic perspective, clinical manifestations in patients with PHARC demonstrate variability with regard to their onset and severity. Given the variable nature of PHARC, an early multidisciplinary assessment is recommended to assess disease severity. Full article
(This article belongs to the Special Issue Ophthalmic Genetics)
Show Figures

Figure 1

21 pages, 392 KiB  
Review
Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders
by Daniel A. Balikov, Adam Jacobson and Lev Prasov
Genes 2021, 12(9), 1403; https://doi.org/10.3390/genes12091403 - 11 Sep 2021
Cited by 15 | Viewed by 5454
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may [...] Read more.
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways. Full article
(This article belongs to the Special Issue Insights into Heritability of Glaucoma and Other Optic Neuropathies)
19 pages, 3990 KiB  
Article
Wild-Type KRAS Allele Effects on Druggable Targets in KRAS Mutant Lung Adenocarcinomas
by Elisa Baldelli, Emna El Gazzah, John Conor Moran, Kimberley A. Hodge, Zarko Manojlovic, Rania Bassiouni, John D. Carpten, Vienna Ludovini, Sara Baglivo, Lucio Crinò, Fortunato Bianconi, Ting Dong, Jeremy Loffredo, Emanuel F. Petricoin and Mariaelena Pierobon
Genes 2021, 12(9), 1402; https://doi.org/10.3390/genes12091402 - 11 Sep 2021
Cited by 9 | Viewed by 4466
Abstract
KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such [...] Read more.
KRAS mutations are one of the most common oncogenic drivers in non-small cell lung cancer (NSCLC) and in lung adenocarcinomas in particular. Development of therapeutics targeting KRAS has been incredibly challenging, prompting indirect inhibition of downstream targets such as MEK and ERK. Such inhibitors, unfortunately, come with limited clinical efficacy, and therefore the demand for developing novel therapeutic strategies remains an urgent need for these patients. Exploring the influence of wild-type (WT) KRAS on druggable targets can uncover new vulnerabilities for the treatment of KRAS mutant lung adenocarcinomas. Using commercially available KRAS mutant lung adenocarcinoma cell lines, we explored the influence of WT KRAS on signaling networks and druggable targets. Expression and/or activation of 183 signaling proteins, most of which are targets of FDA-approved drugs, were captured by reverse-phase protein microarray (RPPA). Selected findings were validated on a cohort of 23 surgical biospecimens using the RPPA. Kinase-driven signatures associated with the presence of the KRAS WT allele were detected along the MAPK and AKT/mTOR signaling pathway and alterations of cell cycle regulators. FoxM1 emerged as a potential vulnerability of tumors retaining the KRAS WT allele both in cell lines and in the clinical samples. Our findings suggest that loss of WT KRAS impacts on signaling events and druggable targets in KRAS mutant lung adenocarcinomas. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)
Show Figures

Figure 1

11 pages, 242 KiB  
Article
Whole Exome Sequencing in a Series of Patients with a Clinical Diagnosis of Tuberous Sclerosis Not Confirmed by Targeted TSC1/TSC2 Sequencing
by Erzsebet Kovesdi, Reka Ripszam, Etelka Postyeni, Emese Beatrix Horvath, Anna Kelemen, Beata Fabos, Viktor Farkas, Kinga Hadzsiev, Katalin Sumegi, Lili Magyari, Pilar Guatibonza Moreno, Peter Bauer and Bela Melegh
Genes 2021, 12(9), 1401; https://doi.org/10.3390/genes12091401 - 10 Sep 2021
Cited by 8 | Viewed by 3472
Abstract
Background: Approximately fifteen percent of patients with tuberous sclerosis complex (TSC) phenotype do not have any genetic disease-causing mutations which could be responsible for the development of TSC. The lack of a proper diagnosis significantly affects the quality of life for these patients [...] Read more.
Background: Approximately fifteen percent of patients with tuberous sclerosis complex (TSC) phenotype do not have any genetic disease-causing mutations which could be responsible for the development of TSC. The lack of a proper diagnosis significantly affects the quality of life for these patients and their families. Methods: The aim of our study was to use Whole Exome Sequencing (WES) in order to identify the genes responsible for the phenotype of nine patients with clinical signs of TSC, but without confirmed tuberous sclerosis complex 1/ tuberous sclerosis complex 2 (TSC1/TSC2) mutations using routine molecular genetic diagnostic tools. Results: We found previously overlooked heterozygous nonsense mutations in TSC1, and a heterozygous intronic variant in TSC2. In one patient, two heterozygous missense variants were found in polycystic kidney and hepatic disease 1 (PKHD1), confirming polycystic kidney disease type 4. A heterozygous missense mutation in solute carrier family 12 member 5 (SLC12A5) was found in one patient, which is linked to cause susceptibility to idiopathic generalized epilepsy type 14. Heterozygous nonsense variant ring finger protein 213 (RNF213) was identified in one patient, which is associated with susceptibility to Moyamoya disease type 2. In the remaining three patients WES could not reveal any variants clinically relevant to the described phenotypes. Conclusion: Patients without appropriate diagnosis due to the lack of sensitivity of the currently used routine diagnostic methods can significantly profit from the wider application of next generation sequencing technologies in order to identify genes and variants responsible for their symptoms. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)