Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Joseph O. Falkinham

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4578 KiB  
Article
Robust and Transparent Silver Oxide Coating Fabricated at Room Temperature Kills Clostridioides difficile Spores, MRSA, and Pseudomonas aeruginosa
by Mohsen Hosseini, Jinge Huang, Myra D. Williams, Gerardo Alexander Gonzalez, Xiuping Jiang, Joseph O. Falkinham and William A. Ducker
Microorganisms 2024, 12(1), 83; https://doi.org/10.3390/microorganisms12010083 - 31 Dec 2023
Cited by 1 | Viewed by 1896
Abstract
Antimicrobial coatings can inhibit the transmission of infectious diseases when they provide a quick kill that is achieved long after the coating application. Here, we describe the fabrication and testing of a glass coating containing Ag2O microparticles that was prepared from [...] Read more.
Antimicrobial coatings can inhibit the transmission of infectious diseases when they provide a quick kill that is achieved long after the coating application. Here, we describe the fabrication and testing of a glass coating containing Ag2O microparticles that was prepared from sodium silicate at room temperature. The half-lives of both methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa on this coating are only 2–4 min. The half-life of Clostridioides difficile spores is about 9–12 min, which is extremely short for a spore. Additional tests on MRSA demonstrate that the coating retains its antimicrobial activity after abrasion and that an increased loading of Ag2O leads to a shorter half-life. This coating combines the properties of optical transparency, robustness, fast kill, and room temperature preparation that are highly desirable for an antimicrobial coating. Full article
(This article belongs to the Special Issue Antimicrobial Activities of Natural Products)
Show Figures

Figure 1

12 pages, 5848 KiB  
Article
Facile Implementation of Antimicrobial Coatings through Adhesive Films (Wraps) Demonstrated with Cuprous Oxide Coatings
by Saeed Behzadinasab, Myra D. Williams, Joseph O. Falkinham and William A. Ducker
Antibiotics 2023, 12(5), 920; https://doi.org/10.3390/antibiotics12050920 - 17 May 2023
Cited by 3 | Viewed by 2048
Abstract
Antimicrobial coatings have a finite lifetime because of wear, depletion of the active ingredient, or surface contamination that produces a barrier between the pathogen and the active ingredient. The limited lifetime means that facile replacement is important. Here, we describe a generic method [...] Read more.
Antimicrobial coatings have a finite lifetime because of wear, depletion of the active ingredient, or surface contamination that produces a barrier between the pathogen and the active ingredient. The limited lifetime means that facile replacement is important. Here, we describe a generic method for rapidly applying and reapplying antimicrobial coatings to common-touch surfaces. The method is to deposit an antimicrobial coating on a generic adhesive film (wrap), and then to attach that modified wrap to the common-touch surface. In this scenario, the adhesion of the wrap and antimicrobial efficacy are separated and can be optimized independently. We demonstrate the fabrication of two antimicrobial wraps, both using cuprous oxide (Cu2O) as the active ingredient. The first uses polyurethane (PU) as the polymeric binder and the second uses polydopamine (PDA). Our antimicrobial PU/Cu2O and PDA/Cu2O wraps, respectively, kill >99.98% and >99.82% of the human pathogen, P. aeruginosa, in only 10 min, and each of them kill >99.99% of the bacterium in 20 min. These antimicrobial wraps can be removed and replaced on the same object in <1 min with no tools. Wraps are already frequently used by consumers to coat drawers or cars for aesthetic or protective purposes. Full article
Show Figures

Figure 1

7 pages, 235 KiB  
Editorial
Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health
by Ivo Pavlik, Vit Ulmann and Joseph O. Falkinham
Microorganisms 2022, 10(8), 1516; https://doi.org/10.3390/microorganisms10081516 - 27 Jul 2022
Cited by 10 | Viewed by 3440
Abstract
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups [...] Read more.
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups of the Mycobacterium (M.) avium complex; M. fortuitum; and other NTM species, including M. marinum infection, known as fish tank granuloma, and M. ulcerans infection, which is described as a Buruli ulcer. NTM could be considered as water-borne, air-borne, and soil-borne pathogens (sapronoses). A lot of clinically relevant NTM species could be considered due to the enormity of published data on permanent, periodic, transient, and incidental sapronoses. Interest is currently increasing in mycobacterioses diagnosed in humans and husbandry animals (esp. pigs) caused by NTM species present in peat bogs, potting soil, garden peat, bat and bird guano, and other matrices used as garden fertilizers. NTM are present in dust particles and in water aerosols, which represent certain factors during aerogenous infection in immunosuppressed host organisms during hospitalization, speleotherapy, and leisure activities. For this Special Issue, a collection of articles providing a current view of the research on NTM—including the clinical relevance, therapy, prevention of mycobacterioses, epidemiology, and ecology—are addressed. Full article
8 pages, 227 KiB  
Article
Desiccation-Tolerance of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium abscessus and Mycobacterium chelonae
by Joseph O. Falkinham and Myra D. Williams
Pathogens 2022, 11(4), 463; https://doi.org/10.3390/pathogens11040463 - 13 Apr 2022
Cited by 5 | Viewed by 2087
Abstract
Desiccation-tolerance of cells of four strains of Mycobacterium chimaera and individual strains of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium abscessus, and Mycobacterium chelonae were measured by two methods. The survival of water-acclimated cells both in filter paper and on the surface [...] Read more.
Desiccation-tolerance of cells of four strains of Mycobacterium chimaera and individual strains of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium abscessus, and Mycobacterium chelonae were measured by two methods. The survival of water-acclimated cells both in filter paper and on the surface of stainless-steel coupons were measured. In filter paper at 40% relative humidity at 25 °C, survival of patient isolates of M. avium and M. chimaera cells was 28% and 34% after 21 days of incubation, whereas it was 100% for the Sorin 3T isolate of M. chimaera. On stainless-steel biofilms after 42 days of incubation at 40% relative humidity at 25 °C, survival of water-acclimated cells of M. intracellulare was above 100%, while M. chelonae cells did not survive beyond 21 days, and survival of water-acclimated cells of M. avium and M. abscessus was 18% and 14%, respectively. On stainless-steel coupons, survival of patient and Sorin 3T isolates of M. chimaera was quite similar, specifically between 14% and 28% survival, after 42 days of incubation at 40% relative humidity at 25 °C. The experiments would support the hypothesis that some nontuberculous mycobacterial species are relatively desiccation-tolerant, whereas others are not. Further, long-term survival of the two M. chimaera strains is consistent with the presence of that species in Sorin 3T heater-coolers shipped throughout the world. Full article
10 pages, 271 KiB  
Review
Ecology of Nontuberculous Mycobacteria
by Joseph O. Falkinham
Microorganisms 2021, 9(11), 2262; https://doi.org/10.3390/microorganisms9112262 - 30 Oct 2021
Cited by 59 | Viewed by 4501
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic human pathogens that are widespread in the human environment. In fact, NTM surround humans. The basis for their widespread presence in soils and natural and human-engineered waters lies primarily in their disinfectant resistance, biofilm formation, and adaptability to [...] Read more.
Nontuberculous mycobacteria (NTM) are opportunistic human pathogens that are widespread in the human environment. In fact, NTM surround humans. The basis for their widespread presence in soils and natural and human-engineered waters lies primarily in their disinfectant resistance, biofilm formation, and adaptability to fluctuating environmental conditions. As NTM in drinking water surround humans, a major route of infection is through aerosols. The characteristics of NTM, including resistance to disinfection, adherence to surfaces and biofilm formation, present challenges to contemporary water treatment processes developed for control of Escherichia coli and fecal coliforms. Full article
10 pages, 237 KiB  
Review
Living with Legionella and Other Waterborne Pathogens
by Joseph O. Falkinham
Microorganisms 2020, 8(12), 2026; https://doi.org/10.3390/microorganisms8122026 - 18 Dec 2020
Cited by 43 | Viewed by 6298
Abstract
Legionella spp. and other opportunistic premise plumbing pathogens (OPPPs), including Pseudomonas aeruginosa, Mycobacterium avium, Stenotrophomonas maltophilia, and Acinetobacter baumannii, are normal inhabitants of natural waters, drinking water distribution systems and premise plumbing. Thus, humans are regularly exposed to these [...] Read more.
Legionella spp. and other opportunistic premise plumbing pathogens (OPPPs), including Pseudomonas aeruginosa, Mycobacterium avium, Stenotrophomonas maltophilia, and Acinetobacter baumannii, are normal inhabitants of natural waters, drinking water distribution systems and premise plumbing. Thus, humans are regularly exposed to these pathogens. Unfortunately, Legionella spp. and the other OPPPs share a number of features that allow them to grow and persist in premise plumbing. They form biofilms and are also relatively disinfectant-resistant, able to grow at low organic matter concentrations, and able to grow under stagnant conditions. Infections have been traced to exposure to premise plumbing or aerosols generated in showers. A number of measures can lead to reduction in OPPP numbers in premise plumbing, including elevation of water heater temperatures. Full article
7 pages, 236 KiB  
Review
Mycobacterium avium Complex (MAC) in Water Distribution Systems and Household Plumbing in the United States
by Joseph O. Falkinham
Water 2020, 12(12), 3338; https://doi.org/10.3390/w12123338 - 28 Nov 2020
Cited by 1 | Viewed by 4930
Abstract
Members of the Mycobacterium avium complex (MAC) are waterborne, opportunistic pathogens whose characteristics make urban water distribution systems and household plumbing ideal habitats for their survival, persistence and growth. Rather than contaminants, MAC are colonists of drinking water systems. MAC are normal inhabitants [...] Read more.
Members of the Mycobacterium avium complex (MAC) are waterborne, opportunistic pathogens whose characteristics make urban water distribution systems and household plumbing ideal habitats for their survival, persistence and growth. Rather than contaminants, MAC are colonists of drinking water systems. MAC are normal inhabitants of natural soils and water, and enter drinking water treatment systems through surface sources. A proportion of MAC survive transmission through the treatment plant, and regrow in the distribution system and household plumbing. Once within household plumbing, MAC adhere to surfaces and form biofilms, thus preventing their washout. The thermal tolerance of MAC leads to growth in water heating systems. Stagnation does not reduce MAC numbers, as MAC can grow at low oxygen levels. MAC present challenges to current water monitoring approaches as their numbers do not correlate with E. coli, fecal coliforms or heterotrophic plate count bacteria. Full article
7 pages, 197 KiB  
Article
Growth Temperature, Trehalose, and Susceptibility to Heat in Mycobacterium avium
by Simonne Guenette, Myra D. Williams and Joseph O. Falkinham
Pathogens 2020, 9(8), 657; https://doi.org/10.3390/pathogens9080657 - 15 Aug 2020
Cited by 12 | Viewed by 3027
Abstract
Mycobacterium avium is capable of an adaptive, reversible response to high-temperature survival depending on its growth temperature. Trehalose concentrations of M. avium cells grown at 42 °C were significantly higher compared to those of cells grown at 25 °C. Further, the survival of [...] Read more.
Mycobacterium avium is capable of an adaptive, reversible response to high-temperature survival depending on its growth temperature. Trehalose concentrations of M. avium cells grown at 42 °C were significantly higher compared to those of cells grown at 25 °C. Further, the survival of cells of M. avium grown at 42 °C and exposed to 65 °C were significantly higher than the survival of cells grown at 25 °C. This adaptive response to growth temperature may play a role in the persistence of M. avium in premise plumbing. Full article
9 pages, 209 KiB  
Article
Methylobacterium spp. as Emerging Opportunistic Premise Plumbing Pathogens
by Kyle J. Szwetkowski and Joseph O. Falkinham
Pathogens 2020, 9(2), 149; https://doi.org/10.3390/pathogens9020149 - 22 Feb 2020
Cited by 24 | Viewed by 4991
Abstract
Methylobacterium spp. are emerging opportunistic premise plumbing pathogens. Human infections linked to premise plumbing provide evidence of their routes of infection. Cells of a collection of representative strains of different Methylobacterium species were tested for hydrophobicity by contact angle, adherence and biofilm formation [...] Read more.
Methylobacterium spp. are emerging opportunistic premise plumbing pathogens. Human infections linked to premise plumbing provide evidence of their routes of infection. Cells of a collection of representative strains of different Methylobacterium species were tested for hydrophobicity by contact angle, adherence and biofilm formation on different plumbing materials, and temperature tolerance (50–60 °C); characteristics shared by OPPPs. Methylobacterium spp. strains were shown to grow in drinking water, have high cell-surface hydrophobicity, adhere to pipe surface materials, form biofilms, and survive exposure to high (60° C) temperatures. It can be concluded that Methylobacterium spp. strains share traits in common with other opportunistic premise plumbing pathogens (OPPPs). Full article
6 pages, 188 KiB  
Article
Effect of Cetylpyridinium Chloride (CPC) on Colony Formation of Common Nontuberculous Mycobacteria
by Myra D. Williams and Joseph O. Falkinham
Pathogens 2018, 7(4), 79; https://doi.org/10.3390/pathogens7040079 - 5 Oct 2018
Cited by 11 | Viewed by 3407
Abstract
Cetylpyridinium chloride (CPC) is widely used to decontaminate water samples for the cultivation of nontuberculous mycobacteria (NTM). The rationale for using CPC is that it kills more non mycobacteria than NTM and thereby prevents the outgrowth and detection of mycobacterial colonies on solid [...] Read more.
Cetylpyridinium chloride (CPC) is widely used to decontaminate water samples for the cultivation of nontuberculous mycobacteria (NTM). The rationale for using CPC is that it kills more non mycobacteria than NTM and thereby prevents the outgrowth and detection of mycobacterial colonies on solid media. The few CPC-susceptibility measurements that have been published, suggest that CPC-decontamination does kill significant numbers of NTM. We confirm that observation here and further demonstrate that CPC-susceptibility varied significantly by one log between representative NTM species and between strains of the same species. CPC-susceptibility was the same for cells collected from cultures or water-acclimated (P = 0.6485, T-test) and CPC-susceptibility was relatively similar over the range of commonly employed CPC dosages. We conclude that use of CPC as decontaminating agent may lead to failure to recover an NTM isolate and considerable underestimates of NTM numbers. Full article
11 pages, 486 KiB  
Article
Inhibition of Adherence of Mycobacterium avium to Plumbing Surface Biofilms of Methylobacterium spp.
by Mari Carmen Muñoz Egea, Pan Ji, Amy Pruden and Joseph O. Falkinham III
Pathogens 2017, 6(3), 42; https://doi.org/10.3390/pathogens6030042 - 14 Sep 2017
Cited by 19 | Viewed by 4459
Abstract
Both Mycobacterium spp. and Methylobacterium spp. are opportunistic premise plumbing pathogens that are found on pipe surfaces in households. However, examination of data published in prior microbiological surveys indicates that Methylobacterium spp. and Mycobacterium spp. tend not to coexist in the same household [...] Read more.
Both Mycobacterium spp. and Methylobacterium spp. are opportunistic premise plumbing pathogens that are found on pipe surfaces in households. However, examination of data published in prior microbiological surveys indicates that Methylobacterium spp. and Mycobacterium spp. tend not to coexist in the same household plumbing biofilms. That evidence led us to test the hypothesis that Methylobacterium spp. in biofilms could inhibit the adherence of Mycobacterium avium. Measurements of adherence of M. avium cells to stainless steel coupons using both culture and PCR-based methods showed that the presence of Methylobacterium spp. biofilms substantially reduced M. avium adherence and vice versa. That inhibition of M. avium adherence was not reduced by UV-irradiation, cyanide/azide exposure, or autoclaving of the Methylobacterium spp. biofilms. Further, there was no evidence of the production of anti-mycobacterial compounds by biofilm-grown Methylobacterium spp. cells. The results add to understanding of the role of microbial interactions in biofilms as a driving force in the proliferation or inhibition of opportunistic pathogens in premise plumbing, and provide a potential new avenue by which M. avium exposures may be reduced for at-risk individuals. Full article
Show Figures

Figure 1

14 pages, 193 KiB  
Review
Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water
by Joseph O. Falkinham, Amy Pruden and Marc Edwards
Pathogens 2015, 4(2), 373-386; https://doi.org/10.3390/pathogens4020373 - 9 Jun 2015
Cited by 216 | Viewed by 14826
Abstract
Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common [...] Read more.
Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. Full article
(This article belongs to the Special Issue Waterborne Pathogens)
18 pages, 932 KiB  
Article
Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters
by Krista Williams, Amy Pruden, Joseph O. Falkinham and Marc Edwards
Pathogens 2015, 4(2), 355-372; https://doi.org/10.3390/pathogens4020355 - 9 Jun 2015
Cited by 34 | Viewed by 7615
Abstract
Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S [...] Read more.
Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0–1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches. Full article
(This article belongs to the Special Issue Waterborne Pathogens)
Show Figures

Figure 1

13 pages, 681 KiB  
Review
Common Features of Opportunistic Premise Plumbing Pathogens
by Joseph O. Falkinham
Int. J. Environ. Res. Public Health 2015, 12(5), 4533-4545; https://doi.org/10.3390/ijerph120504533 - 24 Apr 2015
Cited by 97 | Viewed by 8507
Abstract
Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, [...] Read more.
Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001–2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water—not contaminants—that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control. Full article
18 pages, 1296 KiB  
Article
Phyllopshere Bacterial Community Structure of Spinach (Spinacia oleracea) as Affected by Cultivar and Environmental Conditions at Time of Harvest
by Gabriela Lopez-Velasco, Gregory E. Welbaum, Joseph O. Falkinham III and Monica A. Ponder
Diversity 2011, 3(4), 721-738; https://doi.org/10.3390/d3040721 - 20 Dec 2011
Cited by 21 | Viewed by 8356
Abstract
Modern molecular ecology techniques were used to demonstrate the effects of plant genotype and environmental conditions prior to harvest on the spinach epiphytic bacterial community. Three cultivars of spinach with different leaf topographies were collected at three different periods during the fall growing [...] Read more.
Modern molecular ecology techniques were used to demonstrate the effects of plant genotype and environmental conditions prior to harvest on the spinach epiphytic bacterial community. Three cultivars of spinach with different leaf topographies were collected at three different periods during the fall growing season. Leaf surface topography had an effect on diversity and number of culturable bacteria on the phylloepiphtyic community of spinach. Savoy cultivars, which had larger surface area and more stomata and glandular trichomes, where bacterial aggregates were observed, featured more diverse communities with increased richness and larger bacterial populations compared to flat-leaved cultivars. Bacterial community richness was compared using denaturant gradient gel electrophoresis (DGGE), while abundance was quantified using 16s rRNA primers for major phyla. The most diverse communities, both in richness and abundance, were observed during the first sampling period, immediately following a period of rapid spinach growth. Exposure to lower air and soil temperatures and decreased precipitation resulted in significantly reduced bacterial population size and bacterial community richness in November and December. This study describes the effect of the plant characteristics and environmental conditions that affect spinach microbiota population size and diversity, which might have implications in the survival of food and plant bacterial pathogens. Full article
Show Figures

Back to TopTop