Journal Description
Atmosphere
Atmosphere
is an international, peer-reviewed, open access journal of scientific studies related to the atmosphere published monthly online by MDPI. The Italian Aerosol Society (IAS) and Working Group of Air Quality in European Citizen Science Association (ECSA) are affiliated with Atmosphere and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), Ei Compendex, GEOBASE, GeoRef, Inspec, CAPlus / SciFinder, Astrophysics Data System, and other databases.
- Journal Rank: CiteScore - Q2 (Environmental Science (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.9 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Atmosphere.
- Companion journals for Atmosphere include: Meteorology and Aerobiology.
Impact Factor:
2.3 (2024);
5-Year Impact Factor:
2.5 (2024)
Latest Articles
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 (registering DOI) - 26 Jul 2025
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the
[...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality.
Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Open AccessArticle
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by
Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 (registering DOI) - 26 Jul 2025
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring
[...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life.
Full article
(This article belongs to the Special Issue Characteristics and Trends of Air Pollutants and Their Relationship to Atmospheric Circulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis of the Charge Structure Accompanied by Hail During the Development Stage of Thunderstorm on the Qinghai–Tibet Plateau
by
Yajun Li, Xiangpeng Fan and Yuxiang Zhao
Atmosphere 2025, 16(8), 906; https://doi.org/10.3390/atmos16080906 (registering DOI) - 26 Jul 2025
Abstract
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system
[...] Read more.
The charge structure and lightning activities during the development stage of a thunderstorm with a hail-falling process in Datong County of Qinghai Province on 16 August 2014 were studied by using a multi-station observation network composed of a very-high-frequency, three-dimensional, lightning-radiation-source location system and broadband electric field. The research results show that two discharge regions appeared during the development stage of the thunderstorm. The charge structure was all a negative dipolar polarity in two discharge regions; however, the heights of the charge regions were different. The positive-charge region at a height of 2–3.5 km corresponds to −1–−10 °C and the negative-charge region at a height of 3.5–5 km corresponds to −11–−21 °C in one discharge region; the positive-charge region at a height of 4–5 km corresponds to −15–−21 °C and the negative-charge region at a height of 5–6 km corresponds to −21–−29 °C in another region. The charge regions with the same polarity at different heights in the two discharge regions gradually connected with the occurrence of the hail-falling process during the development stage of the thunderstorm, and the overall height of the charge regions decreased. All the intracloud lightning flashes that occurred in the thunderstorm were of inverted polarity discharge, and the horizontal transmission distance of the discharge channel was short, all within 10 km. The negative intracloud lightning flash, negative cloud-to-ground lightning flash, and positive cloud-to-ground lightning flash generated during the thunderstorm process accounted for 83%, 16%, and 1% of the total number of lightning flashes, respectively. Negative cloud-to-ground lightning flashes mainly occurred more frequently in the early phase of the thunderstorm development stage. As the thunderstorm developed, the frequency of intracloud lightning flashes became greater than that of negative cloud-to-ground lightning flashes, and finally far exceeded it. The frequency of lightning flashes decreases sharply and the intensity of thunderstorms decreases during the hail-falling period.
Full article
(This article belongs to the Section Meteorology)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by
Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics
[...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Open AccessArticle
Analysis of the Relation Between Solar Activity and Parameters of the Sporadic E Layer
by
Yabin Zhang, Xiaobao Zheng, Zonghua Ding, Shuji Sun, Jian Wu and Longjiang Chen
Atmosphere 2025, 16(8), 904; https://doi.org/10.3390/atmos16080904 - 24 Jul 2025
Abstract
Based on the ionosonde data from stations at different latitudes in high- and low-solar-activity years, the effects of solar activity on the parameters of the Es layer and the foE amplitude spectrum are analyzed. The results show that the influence of solar activity
[...] Read more.
Based on the ionosonde data from stations at different latitudes in high- and low-solar-activity years, the effects of solar activity on the parameters of the Es layer and the foE amplitude spectrum are analyzed. The results show that the influence of solar activity on the intensity of the Es layer at different latitude sites is not consistent, and there is no significant agreement conclusion. And the spectral analysis results show that solar activity has little influence on the amplitude spectrum of foEs. But the incidence of Es layer, the height distribution of Es layer during daytime, and the Es layer traces have a negative correlation with solar activity. The research in the paper has certain significance for the study of influencing factors in the formation of the Es layer.
Full article
(This article belongs to the Special Issue Radiowave Propagation in the Atmosphere: Bridging Signal Physics and Technological Innovation)
►▼
Show Figures

Figure 1
Open AccessArticle
Reconstructing of Satellite-Derived CO2 Using Multiple Environmental Variables—A Case Study in the Provinces of Huai River Basin, China
by
Yuxin Zhu, Ying Zhang, Linping Zhu and Jinzong Zhang
Atmosphere 2025, 16(8), 903; https://doi.org/10.3390/atmos16080903 - 24 Jul 2025
Abstract
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products,
[...] Read more.
The introduction of the ”dual carbon” target has increased the need for products that can accurately measure carbon dioxide levels, reflecting the rising demand. Due to challenges in achieving the required spatiotemporal resolution, accuracy, and spatial continuity with current carbon dioxide concentration products, it is essential to explore methods for obtaining carbon dioxide concentration products with completeness in space and time. Based on the 2018 OCO-2 carbon dioxide products and environmental variables such as vegetation coverage (FVC, LAI), net primary productivity (NPP), relative humidity (RH), evapotranspiration (ET), temperature (T) and wind (U, V), this study constructed a multiple regression model to obtain the spatial continuous carbon dioxide concentration products in the provinces of Huai River Basin. Using indicators such as correlation coefficient, root mean square error (RMSE), local variance, and percentage of valid pixels, the performance of model was validated. The validation results are shown as follows: (1) Among the selected environmental variables, the primary factors affecting the spatiotemporal distribution of carbon dioxide concentration are ET, LAI, FVC, NPP, T, U, and RH. (2) Compared with the OCO-2 carbon dioxide products, the percentage of valid pixels of the reconstructed carbon dioxide concentration data increased from less than 1% to over 90%. (3) The local variance in reconstructed data was significantly larger than that of original OCO-2 products. (4) The average monthly RMSE is 2.69. Therefore, according to the model developed in this study, we can obtain a carbon dioxide concentration dataset that is spatially complete, meets precision requirements, and is rich in local detail information, which can better reflect the spatial pattern of carbon dioxide concentration and can be used to examine the carbon cycle between the terrestrial environment, biosphere, and atmosphere.
Full article
(This article belongs to the Section Air Quality)
►▼
Show Figures

Figure 1
Open AccessArticle
Indoor Environmental Quality in Tanzanian Secondary Schools: Objective Baseline Measurements
by
Oluyemi Toyinbo, Eunice Jengo, Xuzel Villavicencio Peralta and Björn Haßler
Atmosphere 2025, 16(8), 902; https://doi.org/10.3390/atmos16080902 - 24 Jul 2025
Abstract
This study assessed the baseline indoor environmental quality (IEQ) of secondary school classrooms in Tanzania by measuring temperature, relative humidity, noise, lighting, and indoor air quality. Objective measurements were conducted using calibrated sensors in 14 classrooms across five schools, with data collected during
[...] Read more.
This study assessed the baseline indoor environmental quality (IEQ) of secondary school classrooms in Tanzania by measuring temperature, relative humidity, noise, lighting, and indoor air quality. Objective measurements were conducted using calibrated sensors in 14 classrooms across five schools, with data collected during occupied school hours and additional noise measurements during unoccupied periods. All classrooms are naturally ventilated through operable windows and doors. The findings reveal a pattern of cumulative IEQ deficiencies: classroom temperatures frequently exceeded the recommended 20–24 °C range, reaching means as high as 30.4 °C, while relative humidity varied widely, with levels occasionally surpassing 65%. Noise levels consistently exceeded the World Health Organization (WHO)’s recommended 35 dBA threshold, with significant differences observed between occupied and unoccupied periods (p = 0.02). Light distribution was uneven, with significantly higher lux levels near windows than at classroom centers (p < 0.001), and artificial lighting was generally insufficient due to infrastructure limitations. Although CO2 concentrations remained below the 1000 ppm threshold, indicating adequate ventilation, particulate matter levels were often elevated, with PM2.5 reaching up to 58.80 µg/m3 and PM10 up to 96.90 µg/m3, exceeding health-based guidelines. Together, these findings suggest that students are exposed to multiple environmental stressors that may impair health, comfort, and academic performance. This study provides a critical baseline for future research and context-specific interventions aimed at improving learning environments in Tanzanian schools and similar settings in East Africa.
Full article
(This article belongs to the Special Issue Indoor Environmental Quality, Health and Performance)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by
Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP)
[...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability.
Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by
Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and
[...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies.
Full article
(This article belongs to the Special Issue Emission Characteristics and Control Technology of Volatile Organic Compounds)
►▼
Show Figures

Figure 1
Open AccessArticle
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by
Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established
[...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes.
Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
►▼
Show Figures

Figure 1
Open AccessArticle
Polar Mesospheric Winter Echoes Observed with ESRAD in Northern Sweden During 1996–2021
by
Evgenia Belova, Simon Nils Persson, Victoria Barabash and Sheila Kirkwood
Atmosphere 2025, 16(8), 898; https://doi.org/10.3390/atmos16080898 - 23 Jul 2025
Abstract
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere
[...] Read more.
Polar Mesosphere Winter Echoes (PMWEs) are relatively strong radar echoes from 50–80 km altitudes observed at a broad frequency range, at polar latitudes, mainly during equinox and winter seasons. Most PMWEs can be explained by neutral air turbulence creating structures in the mesosphere and enhanced electron density. We have studied the characteristics of PMWEs and their dependence on solar and geophysical conditions using the ESrange RADar (ESRAD) located in northern Sweden during 1996–2021. We found that PMWEs start in mid-August and finish in late May. The mean daily occurrence rate varied significantly during the PMWE season, showing several relative maxima and a minimum in December. The majority of PMWEs were observed during sunlit hours at 60–75 km. Some echoes were detected at 50–60 km. The echo occurrence rate showed a pronounced maximum near local noon at 64–70 km. During nighttime, PMWEs were observed at about 75 km. PMWEs were observed on 47% of days with disturbed conditions (enhanced solar wind speed, Kp index, solar proton, and X-ray fluxes), and on only 14% of days with quiet conditions. Elevated solar wind speed and Kp index each accounted for 30% of the days with PMWE detections.
Full article
(This article belongs to the Section Upper Atmosphere)
►▼
Show Figures

Figure 1
Open AccessArticle
Characteristics of Surface Temperature Inversion at the Muztagh-Ata Site on the Pamir Plateau
by
Dai-Ping Zhang, Wen-Bo Gu, Ali Esamdin, Chun-Hai Bai, Hu-Biao Niu, Li-Yong Liu and Ji-Cheng Zhang
Atmosphere 2025, 16(8), 897; https://doi.org/10.3390/atmos16080897 - 23 Jul 2025
Abstract
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study
[...] Read more.
In this paper, based on all the data from September 2021 to June 2024 collected by a 30 m meteorological tower and a differential image motion monitor (DIMM) at the Muztagh-Ata site located on the Pamir Plateau in western Xinjiang, China, we study the characteristics of the surface temperature inversion and its effect on astronomical seeing at the site. The results show the following: The temperature inversion at the Muztagh-Ata site is highly pronounced at night; it is typically distributed below a height of about 18 m; it weakens and disappears gradually after sunrise, while it forms gradually after sunset and remains stable during the night; and it is weaker in spring and summer but stronger in autumn and winter. Correlation studies with meteorological parameters show the following: increases in both cloud coverage and humidity weaken temperature inversion; the distribution of inversion with wind speed exhibits a bimodal distribution; southwesterly winds prevail at a frequency of 73.76% and are typically accompanied by strong temperature inversions. Finally, by statistical patterns, we found that strong temperature inversion at the Muztagh-Ata site usually bring better seeing by suppressing atmospheric optical turbulence.
Full article
(This article belongs to the Special Issue Climate Change and Its Impact on Ground Based Astronomical Observations)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by
Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting
[...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments.
Full article
(This article belongs to the Section Aerosols)
►▼
Show Figures

Figure 1
Open AccessArticle
Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024
by
Xiaoli Xia, Shangpeng Sun, Xinru Wang and Feifei Shen
Atmosphere 2025, 16(8), 895; https://doi.org/10.3390/atmos16080895 - 22 Jul 2025
Abstract
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the
[...] Read more.
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the temporal variation characteristics, spatial distribution patterns, and driving factors of PM2.5 concentrations in this region. Based on the PM2.5 concentration observation data, ground meteorological data, environmental data, and socio-economic data from 2022 to 2024, this study conducted in-depth and systematic research by using advanced methods, such as spatial autocorrelation analysis and geographical detectors. The research results show that the concentration of PM2.5 rose from 2022 to 2023, but decreased from 2023 to 2024. From the perspective of seasonal variations, the concentration of PM2.5 shows a distinct characteristic of being “high in winter and low in summer”. The monthly variation shows a “U”-shaped distribution pattern. In terms of spatial changes, the PM2.5 concentration in the inter-provincial border region of eastern China (Jiangsu, Anhui, Shandong, Henan) forms a gradient difference of “higher in the west and lower in the east”. The high-concentration agglomeration areas are mainly concentrated in the Henan part of the study region, while the low-concentration agglomeration areas are distributed in the eastern coastal parts of the study region. The analysis of the driving factors of the PM2.5 concentration based on geographical detectors reveals that the average temperature is the main factor affecting the PM2.5 concentration. The interaction among the factors contributing to the spatial differentiation of the PM2.5 concentration is very obvious. Temperature and population density (q = 0.92), temperature and precipitation (q = 0.95), slope and precipitation (q = 0.97), as well as DEM and population density (q = 0.96), are the main combinations of factors that have continuously affected the spatial differentiation of the PM2.5 concentration for many years. The research results from this study provide a scientific basis and decision support for the prevention, control, and governance of PM2.5 pollution.
Full article
(This article belongs to the Special Issue Atmospheric Pollution Dynamics in China)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by
Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using
[...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development.
Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Aromatic Volatile Organic Compounds in Croatian Domestic Environments: Initial Findings
by
Tajana Horvat, Ivana Jakovljević, Vesna Tomašić, Gordana Pehnec, Goran Gajski and Mario Lovrić
Atmosphere 2025, 16(8), 893; https://doi.org/10.3390/atmos16080893 - 22 Jul 2025
Abstract
This study aimed to investigate the concentrations of BTEX (benzene, toluene, ethylbenzene, ortho-xylene (o-), and meta and para-xylene (m-,p-)) in Croatian households between December 2023 and January 2025. The results showed that BTEX concentrations
[...] Read more.
This study aimed to investigate the concentrations of BTEX (benzene, toluene, ethylbenzene, ortho-xylene (o-), and meta and para-xylene (m-,p-)) in Croatian households between December 2023 and January 2025. The results showed that BTEX concentrations were higher indoors than outdoors, suggesting a considerable contribution from indoor sources. Significant statistical differences were found between indoor and outdoor levels of ethylbenzene, m-,p-xylene, and o-xylene, especially during cold periods when indoor activities increase and ventilation decreases. Spearman’s correlation analysis showed weak correlations between benzene and other BTEX compounds, implying multiple distinct sources such as cooking, smoking, and outdoor air infiltration.
Full article
(This article belongs to the Special Issue Enhancing Indoor Air Quality: Monitoring, Analysis and Assessment)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by
Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme
[...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified.
Full article
(This article belongs to the Section Meteorology)
►▼
Show Figures

Figure 1
Open AccessArticle
Sensitivity Study of WRF Model at Different Horizontal Resolutions for the Simulation of Low-Level, Mid-Level and High-Level Wind Speeds in Hebei Province
by
Na Zhao, Xiashu Su, Xianluo Meng, Yuling Yang, Yayin Jiao, Zhi Zhang and Wenzhi Nie
Atmosphere 2025, 16(7), 891; https://doi.org/10.3390/atmos16070891 - 21 Jul 2025
Abstract
This study evaluated the wind speed simulation performance of the Weather Research and Forecasting (WRF) model at three resolutions in Hebei Province based on wind speed data from 2022. The results show that the simulation effectiveness of the WRF model for wind speeds
[...] Read more.
This study evaluated the wind speed simulation performance of the Weather Research and Forecasting (WRF) model at three resolutions in Hebei Province based on wind speed data from 2022. The results show that the simulation effectiveness of the WRF model for wind speeds at different heights varies significantly under different seasons and topographic conditions. In general, the model simulates the wind speed at the high level most accurately, followed by the mid level, and the simulation of low level wind speed shows the largest bias. Increasing the model resolution significantly improves the simulation of low-level wind speed, and the 5 km resolution performs best at most stations; while for the mid-level and high-level wind speeds, increasing the resolution does not significantly improve the simulation effect, and the high-resolution simulation has a greater bias at some stations. In terms of topographic features, wind speeds are generally better simulated in mountainous areas than in the plains during spring, summer, and autumn, while the opposite is true in winter. These findings provide scientific reference for WRF model optimal resolution selection and wind resource assessment.
Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
►▼
Show Figures

Figure 1
Open AccessArticle
Carbon Density Change Characteristics and Driving Factors During the Natural Succession of Forests on Xinglong Mountain in the Transition Zone Between the Qinghai–Tibet and Loess Plateaus
by
Wenzhen Zong, Zhengni Chen, Quanlin Ma, Lei Ling and Yiming Zhong
Atmosphere 2025, 16(7), 890; https://doi.org/10.3390/atmos16070890 - 20 Jul 2025
Abstract
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems
[...] Read more.
The transition zone between the Qinghai–Tibet and Loess Plateaus is an important ecological functional area and carbon (C) reservoir in China. Studying the main drivers of C density changes in forest ecosystems is crucial to enhance the C sink potential of those ecosystems in ecologically fragile regions. In this study, four stand types at different succession stages in the transition zone of Xinglong Mountain were selected as the study objective. The C densities of the ecosystem, vegetation, plant debris, and soil of each stand type were estimated, and the related driving factors were quantified. The results showed that the forest ecosystem C density continuously increased significantly with natural succession (381.23 Mg/hm2 to 466.88 Mg/hm2), indicating that the ecosystem has a high potential for C sequestration with progressive forest succession. The increase in ecosystem C density was mainly contributed to by the vegetation C density, which was jointly affected by the vegetation characteristics (C sink, mean diameter at breast height, mean tree height), litter C/N (nitrogen), and surface soil C/N, with factors explaining 95.1% of the variation in vegetation C density, while the net effect of vegetation characteristics was the strongest (13.9%). Overall, this study provides a new insight for understanding the C cycle mechanism in ecologically fragile areas and further improves the theoretical framework for understanding the C sink function of forest ecosystems.
Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
►▼
Show Figures

Figure 1
Open AccessArticle
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by
Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational
[...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus.
Full article
(This article belongs to the Special Issue Air Temperature and Precipitation and Relationship to Atmospheric Circulation (2nd Edition))
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Atmosphere Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Atmosphere, Earth, Encyclopedia, Entropy, Fractal Fract, MAKE, Meteorology
Revisiting Butterfly Effect, Multiscale Dynamics, and Predictability Using Ai-Enhanced Modeling Framework (AEMF) and Chaos Theory
Topic Editors: Bo-Wen Shen, Roger A. Pielke Sr., Xubin ZengDeadline: 31 July 2025
Topic in
Agriculture, Atmosphere, Sustainability, Land, Environments, Agronomy, Energies
Greenhouse Gas Emission Reductions and Carbon Sequestration in Agriculture
Topic Editors: Dimitrios Aidonis, Dionysis Bochtis, Charisios AchillasDeadline: 31 August 2025
Topic in
Atmosphere, Energies, Sustainability, Toxics, Applied Sciences, Applied Biosciences
Biomass Use and its Health and Environmental Effects
Topic Editors: Wei Du, Zhaofeng Chang, Yuanchen ChenDeadline: 30 September 2025
Topic in
Atmosphere, Energies, JMSE, Sustainability, Wind
Wind, Wave and Tidal Energy Technologies in China
Topic Editors: Wei Shi, Qihu Sheng, Fengmei Jing, Dahai Zhang, Puyang ZhangDeadline: 31 October 2025

Conferences
Special Issues
Special Issue in
Atmosphere
Atmospheric Pollution in Mining Areas
Guest Editor: Maria de Lurdes DinisDeadline: 28 July 2025
Special Issue in
Atmosphere
Cyclones: Types and Phase Transitions
Guest Editors: Michelle Simões Reboita, Rosmeri Porfírio da Rocha, Wataru YanaseDeadline: 30 July 2025
Special Issue in
Atmosphere
Recent Advances in Ionosphere Observation and Investigation (2nd Edition)
Guest Editors: Emilia Correia, Jean-Pierre Raulin, Paulo Roberto Fagundes, José-Valentin BagestonDeadline: 31 July 2025
Special Issue in
Atmosphere
Extreme Climate Events: Causes, Risk and Adaptation
Guest Editors: Shijie Li, Shanlei Sun, Qi Liu, Dong Fan, Siyu MaDeadline: 31 July 2025
Topical Collections
Topical Collection in
Atmosphere
Indoor Air Quality: From Sampling to Risk Assessment in the Light of New Legislations
Collection Editors: Pasquale Avino, Gaetano Settimo
Topical Collection in
Atmosphere
Livestock Odor Issues and Air Quality
Collection Editor: Jacek Koziel
Topical Collection in
Atmosphere
Measurement of Exposure to Air Pollution
Collection Editor: Luca Stabile