Application of the Artificial Neural Network to Predict the Bending Strength of the Engineered Laminated Wood Produced Using the Hydrolyzed Soy Protein-Melamine Urea Formaldehyde Copolymer Adhesive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Design
2.2.2. Preparation of the Soybean Oil Meal-Modified Protein Adhesive
2.2.3. Making the MUF Resin and Wood Laminated Product
2.2.4. Artificial Neural Network (ANN) Analysis
2.3. Characterization Analysis
3. Results and Discussion
Characterization Analysis of Results
4. Conclusions
- -
- The bending strength changes significantly as the F to M/U molar ratio and the weight ratio of the modified protein to MUF resin change so that as F to M/U molar ratio decreases and the weight ratio of protein to MUF resin increases, the bending strength increases. Also, in the interactive effect of MR and press temperature, as the press temperature increases or decreases and the MR increases to a certain level and as MR approaches the maximum value, MOR decreases. Furthermore, in the interactive effect of the press temperature and weight ratio of protein to MUF resin, the increase in the temperature and WR will result in the increase in the bending strength.
- -
- The evaluation between the experimental values and those predicted by ANN resulted in the presentation of an excellent relationship (with a difference less than 5%) for the estimated series of the process parameters.
- -
- The ANN method could effectively produce experimental data resulting from the determination of the bending strength of the laminated wood products so that using suitable algorithms, ANN could offer a well-trained model to estimate the response being examined through which the experimental costs and time could be saved to determine the effect of each production variable on the response being examined.
- -
- The diagnostic analysis presented by FTIR and TGA showed that urea, melamine and free formaldehyde in resin could interact chemically with the modified soy protein and improve the bending strength of the laminated product so that as the modified protein increased compared to the MUF resin, the chemical interactive effects intensified along with the decrease in the F to M/U molar ratio.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Preece, K.E.; Hooshyar, N.; Zuidam, N.J. Whole soybean protein extraction processes: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 163–172. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, Q.; Lin, Q.; Fan, M.; Zhou, J.; Rao, J.; Chen, N. Investigation of an ambient temperature-curable soy-based adhesive for wood composites. Int. J. Adhes. Adhes. 2019, 95, 102429. [Google Scholar] [CrossRef]
- Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, P.M.; Halis, R. Lignin-based copolymer adhesives for composite wood panels—A review. Int. J. Adhes. Adhes. 2019, 95, 102408. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Pizzi, A.; Mittal, K.L. Handbook of Adhesive Technology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Liu, M.; Wang, Y.; Wu, Y.; He, Z.; Wan, H. “Greener” adhesives composed of urea-formaldehyde resin and cottonseed meal for wood-based composites. J. Clean. Prod. 2018, 187, 361–371. [Google Scholar] [CrossRef]
- Li, J.; Pradyawong, S.; He, Z.; Sun, X.S.; Wang, D.; Cheng, H.N.; Zhong, J. Assessment and application of phosphorus/calcium-cottonseed protein adhesive for plywood production. J. Clean. Prod. 2019, 229, 454–462. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, Z.; Li, J.; Li, X.; Kan, Y.; Gao, Z. Effect of kaolin content on the performances of kaolin-hybridized soybean meal-based adhesives for wood composites. Compos. Part B Eng. 2019, 173, 106919. [Google Scholar] [CrossRef]
- Chen, N.R.; Huang, J.; Li, K.C. Investigation of a new formaldehyde-free adhesive consisting of soybean flour and Kymene (R) 736 for interior plywood. Holzforschung 2019, 73, 409–414. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Sun, X.S. Improved water resistance in undecylenic acid (UA)- modified soy protein isolate (SPI)-based adhesives. Ind. Crops Prod. 2015, 74, 577–584. [Google Scholar] [CrossRef]
- Nordqvist, P.; Khabbaz, F.; Malmström, E. Comparing bond strength and water resistance of alkali-modified soy protein isolate and wheat gluten adhesives. Int. J. Adhes. Adhes. 2010, 30, 72–79. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, Y.; Gao, Q.; Li, J.; Yan, N. From wastes to functions: A new soybean meal and bark-based adhesive. ACS Sustain. Chem. Eng. 2020, 8, 10767–10773. [Google Scholar] [CrossRef]
- Zheng, P.T.; Lin, Q.J.; Li, F.; Ou, Y.T.; Chen, N.R. Development and characterization of a defatted soy flour-based bio-adhesive crosslinked by 1,2,3,4-butanetetracarboxylic acid. Int. J. Adhes. Adhes. 2017, 78, 148–154. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.H.; Deng, L.Y.; Li, Z.G.; Chen, Z.J. Properties of soy-based wood adhesives enhanced by waterborne polyurethane modification. J. Biobased Mater. Bio. 2017, 11, 330–335. [Google Scholar] [CrossRef]
- Ozsahin, S. Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis. Eur. J. Wood Prod. 2013, 71, 769–777. [Google Scholar] [CrossRef]
- Canakci, A.; Ozsahin, S.; Varol, T. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 2012, 228, 26–35. [Google Scholar] [CrossRef]
- Haftkhani, A.R.; Abdoli, F.; Sepehr, A.; Mohebby, B. Regression and ANN models for predicting MOR and MOE of heat-treated fir wood. J. Build. Eng. 2021, 42, 102788. [Google Scholar] [CrossRef]
- Chai, H.; Chen, X.; Cai, Y.; Zhao, J. Artificial neural network modeling for predicting wood moisture content in high frequency vacuum drying process. Forests 2019, 10, 16. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; del Alamo-Sanza, M.; Nevares, I. Application of image analysis and artificial neural networks to the prediction in-line of OTR in oak wood planks for cooperage. Mater. Des. 2019, 181, 107979. [Google Scholar] [CrossRef]
- Yapıcı, F.; Esen, R.; Erkaymaz, O.; Baş, H. Modeling of compressive strength parallel to grain of heat treated scotch pine (Pinus sylvestris L.) wood by using artificial neural network. Drv. Ind. 2015, 66, 347–352. [Google Scholar] [CrossRef]
- Li, Z.; Tao, D.; Li, M.; Shu, Z.; Jing, S.; He, M.; Qi, P. Prediction of damage accumulation effect of wood structural members under long-term service: A machine learning approach. Materials 2019, 12, 1243. [Google Scholar] [CrossRef]
- Tiryaki, S.; Hamzacebi, C. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 2014, 49, 266–274. [Google Scholar] [CrossRef]
- Neyses, B.; Scharf, A. Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images. Eur. J. Wood Prod. 2022, 80, 1121–1133. [Google Scholar] [CrossRef]
- Gurgen, A.; Yiıldiz, S. Modelling water intake properties of heat-treated beech and spruce wood treated at different temperature using by artificial neural network. Wood Ind. Eng. 2020, 2, 6–12. [Google Scholar]
- Ozturk, H.; Demir, A.; Demirkir, C. Optimization of pressing parameters for the best mechanical properties of wood veneer/polystyrene composite plywood using artificial neural network. Eur. J. Wood Prod. 2022, 80, 907–922. [Google Scholar] [CrossRef]
- Kurt, R. Control of system parameters by estimating screw withdrawal strength values of particleboards using artificial neural network-based statistical control charts. J. Wood Sci. 2022, 68, 64. [Google Scholar] [CrossRef]
- Umeonyiagu, I.E.; Nwobi-Okoye, C.C. Modelling and multi objective optimization of bamboo reinforced concrete beams using ANN and genetic algorithms. Eur. J. Wood Prod. 2019, 77, 931–947. [Google Scholar] [CrossRef]
- Nazerian, M.; Keshtegar, B.; Beyki, Z.; Partovinia, A. Adaptive harmony search algorithm for mechanical performance optimization of properties of particleboard from cotton stalk. Waste Manag. Res. 2021, 39, 314–324. [Google Scholar] [CrossRef]
- Nazerian, M.; Karimi, J.; Torshizi, H.J.; Papadopoulos, A.N.; Hamedi, S.; Vatankhah, E. An improved optimization model to predict the MOR of Glulam prepared by UF-oxidized starch adhesive: A hybrid artificial neural network-modified genetic algorithm optimization approach. Materials 2022, 15, 9074. [Google Scholar] [CrossRef] [PubMed]
- Nazerian, M.; Kashi, H.R.; Rudi, H.; Papadopoulos, A.N.; Vatankhah, E.; Foti, D.; Kermaniyan, H. Comparison of the estimation ability of the tensile index of paper impregnated by UF-modified starch adhesive using ANFIS and MLR. J. Compos. Sci. 2022, 6, 341. [Google Scholar] [CrossRef]
- Nazerian, M.; Akbarzadeh, M.; Papadopoulos, A.N. Comparative analysis of ANN-MLP, ANFIS-ACOR and MLR modeling approaches for estimation of bending strength of Glulam. J. Compos. Sci. 2023, 7, 57. [Google Scholar] [CrossRef]
- Tiryaki, S.; Malkocoglu, A.; OZsahin, S. Artificial neural network modeling to predict optimum power consumption in wood machining. Drewno 2016, 59, 109–125. [Google Scholar] [CrossRef]
- Tiryaki, S.; Ozsahin, S.; Aydin, A. Employing artificial neural networks for minimizing surface roughness and power consumption in abrasive machining of wood. Eur. J. Wood Prod. 2017, 75, 347–358. [Google Scholar] [CrossRef]
- Demir, A.; Cakiroglu, E.O.; Aydin, I. Determination of CNC processing parameters for the best wood surface quality via artificial neural network. Wood Mater. Sci. Eng. 2022, 17, 685–692. [Google Scholar] [CrossRef]
- Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of wastewater treatment plant performance using artificial neural networks. Environ. Model. Softw. 2004, 19, 919–928. [Google Scholar] [CrossRef]
- Zhang, G.; Ptuwo, B.E.; Hu, M.Y. Forecasting with ANN: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Scott, G.M.; Ray, W.H. Creating efficient nonlinear neural network process model that allow model interpretation. J. Pro. Cont. 1993, 3, 163–178. [Google Scholar] [CrossRef]
- Nazerian, M.; Naderi, F.; Papadopoulos, A.P. Performance Evaluation of an Improved ANFIS Approach Using Different Algorithms to Predict the Bonding Strength of Glulam Adhered by Modified Soy Protein–MUF Resin Adhesive. J. Compos. Sci. 2013, 7, 93. [Google Scholar] [CrossRef]
- Taşpınar, F.; Bozkurt, Z. Application of artificial neural networks and regression models in the prediction of daily maximum PM10 concentration in Düzce, Turkey. Fresenius Environ. Bull. 2014, 23, 2450–2459. [Google Scholar]
- Olanipekun, A.T.; Mashinini, P.M.; Owojaiye, O.A.; Maledi, N.B. Applying a neural network-based machine learning to laser-welded spark plasma sintered steel: Predicting vickers micro-hardness. J. Manuf. Mater. Process. 2022, 6, 91. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 1998, 62, 847–855. [Google Scholar] [CrossRef]
- Varol, T.; Canakci, A.; Ozsahin, S. Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks. J. Alloys Compd. 2018, 739, 1005–1014. [Google Scholar] [CrossRef]
- Xu, G.Z.; Eom, Y.G.; Lim, D.H.; Lee, B.H.; Kim, H.J. Adhesion properties of urea-melamine-formaldehyde (UMF) resin with different molar ratios in bonding high and low moisture content veneers. J. Korean Wood Sci. Technol. 2010, 38, 117–123. [Google Scholar] [CrossRef]
- Pizzi, A. Wood Adhesives: Chemistry and Technology; Marcel Dekker Inc.: New York, NY, USA; p. 59.
- Bacigalupe, A.; He, Z.; Escobar, M.M. Effects of rheology and viscosity of bio-based adhesives on bonding performance. In Bio-Based Wood Adhesives; CRC Press: Boca Raton, FL, USA, 2017; pp. 293–309. [Google Scholar]
- Chang, Q. Rheology properties. In Colloid and Interface Chemistry for Water Quality Control; Elsevier: Amsterdam, The Netherlands, 2016; pp. 61–77. [Google Scholar]
- Bacigalupe, A.; Molinari, F.; Eisenberg, P.; Escobar, M.M. Adhesive properties of urea-formaldehyde resins blended with soy protein concentrate. Adv. Compos. Hybrid Mater. 2020, 3, 213–221. [Google Scholar] [CrossRef]
- Bacigalupe, A.; Poliszuk, A.K.; Eisenberg, P.; Escobar, M.M. Rheological behavior and bonding performance of an alkaline soy protein suspension. Int. J. Adhes. Adhes. 2015, 62, 1–6. [Google Scholar] [CrossRef]
- Li, K.; Peshkova, S.; Geng, X. Investigation of soy protein-Kymene adhesive systems for wood composites. J. Am. Oil Chem. Soc. 2004, 81, 487–491. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, X.S.; Wang, D. Isoelectric pH of polyamide-epichlorohydrin modified soy protein improved water resistance and adhesion properties. Appl. Polym. Sci. 2007, 103, 2261–2270. [Google Scholar] [CrossRef]
- Adhikari, B.B.; Kislitsin, V.; Appadu, P.; Chae, M.; Choi, P.; Bressler, D.C. Development of hydrolysed protein-based plywood adhesive from slaughterhouse waste: Effect of chemical modification of hydrolysed protein on moisture resistance of formulated adhesives. RSC Adv. 2018, 8, 2996–3008. [Google Scholar] [CrossRef]
- Frihart, C.R. Handbook of Wood Chemistry and Wood Composites; Rowell, R.M., Ed.; CRC Press: Cleveland, OH, USA, 2005; pp. 215–278. [Google Scholar]
- Frihart, C.R.; Hunt, C.G. Wood Handbook—Wood as an Engineering Material; Forest Products Laboratory: Madison, WI, USA, 2010; pp. 1–24. [Google Scholar]
- Cheng, E.; Sun, X. Effects of wood-surface roughness, adhesive viscosity and processing pressure on adhesion strength of protein adhesive. J. Adhes. Sci. Technol. 2006, 20, 997–1017. [Google Scholar] [CrossRef]
- von Fraunhofer, J.A. Adhesion and Cohesion. Int. J. Dent. 2012, 2012, 951324. [Google Scholar] [CrossRef]
- Fan, D.B.; Qin, T.F.; Chu, F.X. A soy flour-based adhesive reinforced by low addition of MUF resin. J. Adhes. Sci. Technol. 2011, 25, 323–333. [Google Scholar] [CrossRef]
- Qu, P.; Huang, H.; Wu, G.; Sun, E.; Chang, Z. Effects of hydrolysis degree of soy protein isolate on the structure and performance of hydrolyzed soy protein isolate/urea/ formaldehyde copolymer resin. J. Appl. Polym. Sci. 2015, 132, 41469. [Google Scholar] [CrossRef]
- Ghahri, S.; Xinyi, C.; Pizzi, A.; Hajihassani, R. Natural tannins as new cross-linking materials for soy-based adhesives. Polymers 2021, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Luo, J.L.; Bai, Y.Y.; Gao, Q.; Li, J.Z. A high performance soy protein-based bio-adhesive enhanced with a melamine/epichlorohydrin prepolymer and its application on plywood. RSC Adv. 2016, 6, 67669–67676. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Zhou, X.; Li, L.; Yu, L.; Liao, J.; Du, G. Influence of single/collective use of curing agents on the curing behavior and bond strength of soy protein-melamine-urea-formaldehyde (SMUF) resin for plywood assembly. Polymers 2019, 11, 1995. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, S.W.; Gong, J.; Guo, Q.; Wang, Q.; Hua, Y. A soy protein-polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocoll. 2015, 48, 155–164. [Google Scholar] [CrossRef]
- Jiang, K.; Lei, Z.; Yi, M.; Lv, W.; Jing, M.; Feng, Q.; Tan, H.; Chen, Y.; Xiao, H. Improved performance of soy protein adhesive with melamine–urea–formaldehyde prepolymer. RSC Adv. 2021, 11, 27126–27134. [Google Scholar] [CrossRef]
- Das, S.N.; Routray, M.; Nayak, P.L. Spectural, thermal and mechanical properties of furfural and formaldehyde cross-linked soy protein concentrate: A comparative study. Polym. Plast. Technol. Eng. 2008, 47, 567–582. [Google Scholar] [CrossRef]
- Qi, G. Modified Soy Protein Based Adhesive and Their Physicochemical Properties. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2011. [Google Scholar]
№ | x1 | x2 | x3 | MR | WR | Tem | № | x1 | x2 | x3 | MR | WR | Tem |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1.93 | 60 | 180 | 18 | 1 | −1 | 1 | 1.93 | 20 | 180 |
2 | 1 | 1 | −1 | 1.93 | 60 | 140 | 19 | −1 | 0 | 0 | 1.68 | 40 | 160 |
3 | 0 | 0 | 0 | 1.805 | 40 | 160 | 20 | −1 | −1 | 1 | 1.68 | 20 | 180 |
4 | 0 | 0 | 0 | 1.805 | 40 | 160 | 21 | −1 | 1 | 1 | 1.68 | 60 | 180 |
5 | 0 | −1 | 0 | 1.805 | 20 | 160 | 22 | −1 | −1 | 1 | 1.68 | 20 | 180 |
6 | 0 | 0 | 1 | 1.805 | 40 | 180 | 23 | 1 | 1 | −1 | 1.93 | 60 | 140 |
7 | 1 | −1 | −1 | 1.93 | 20 | 140 | 24 | −1 | 1 | −1 | 1.68 | 60 | 140 |
8 | 0 | 1 | 0 | 1.805 | 60 | 160 | 25 | 0 | 0 | 0 | 1.805 | 40 | 160 |
9 | −1 | −1 | −1 | 1.68 | 20 | 140 | 26 | 0 | −1 | 0 | 1.805 | 20 | 160 |
10 | −1 | 1 | 1 | 1.68 | 60 | 180 | 27 | 1 | 0 | 0 | 1.93 | 40 | 160 |
11 | 0 | 0 | 1 | 1.805 | 40 | 180 | 28 | 1 | −1 | −1 | 1.93 | 20 | 140 |
12 | 0 | 0 | 0 | 1.805 | 40 | 160 | 29 | 1 | 0 | 0 | 1.93 | 40 | 160 |
13 | 0 | 0 | −1 | 1.805 | 40 | 140 | 30 | 0 | 1 | 0 | 1.805 | 60 | 160 |
14 | 0 | 0 | −1 | 1.805 | 40 | 140 | 31 | 1 | 1 | 1 | 1.93 | 60 | 180 |
15 | 1 | −1 | 1 | 1.93 | 20 | 180 | 32 | −1 | 1 | −1 | 1.68 | 60 | 140 |
16 | 0 | 0 | 0 | 1.805 | 40 | 160 | 33 | −1 | 0 | 0 | 1.68 | 40 | 160 |
17 | −1 | −1 | −1 | 1.68 | 20 | 140 | 34 | 0 | 0 | 0 | 1.805 | 40 | 160 |
№ | x1 | x2 | x3 | Actual Value | Predicted Value | № | x1 | x2 | x3 | Actual Value | Predicted Value |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 124.40 | 125.57 | 18 | 1 | −1 | 1 | 109.33 | 111.30 |
2 | 1 | 1 | −1 | 106.14 | 98.34 | 19 | −1 | 0 | 0 | 127.49 | 120.10 |
3 | 0 | 0 | 0 | 103.36 | 114.67 | 20 | −1 | −1 | 1 | 116.73 | 114.44 |
4 | 0 | 0 | 0 | 106.91 | 114.67 | 21 | −1 | 1 | 1 | 142.92 | 143.15 |
5 | 0 | −1 | 0 | 101.42 | 99.36 | 22 | −1 | −1 | 1 | 112.54 | 114.44 |
6 | 0 | 0 | 1 | 125.28 | 127.86 | 23 | 1 | 1 | −1 | 98.32 | 98.34 |
7 | 1 | −1 | −1 | 77.95 | 77.21 | 24 | −1 | 1 | −1 | 110.48 | 102.05 |
8 | 0 | 1 | 0 | 124.38 | 126.11 | 25 | 0 | 0 | 0 | 122.5 | 114.67 |
9 | −1 | −1 | −1 | 66.49 | 67.81 | 26 | 0 | −1 | 0 | 97.76 | 99.36 |
10 | −1 | 1 | 1 | 142.06 | 143.15 | 27 | 1 | 0 | 0 | 114.32 | 118.81 |
11 | 0 | 0 | 1 | 132.47 | 127.85 | 28 | 1 | −1 | −1 | 76.49 | 77.21 |
12 | 0 | 0 | 0 | 121.50 | 114.67 | 29 | 1 | 0 | 0 | 123.3 | 118.81 |
13 | 0 | 0 | −1 | 82.57 | 82.64 | 30 | 0 | 1 | 0 | 127.85 | 126.11 |
14 | 0 | 0 | −1 | 86.80 | 82.64 | 31 | 1 | 1 | 1 | 125.49 | 125.57 |
15 | 1 | −1 | 1 | 111.37 | 111.30 | 32 | −1 | 1 | −1 | 114.83 | 102.05 |
16 | 0 | 0 | 0 | 120.50 | 114.67 | 33 | −1 | 0 | 0 | 120.16 | 120.10 |
17 | −1 | −1 | −1 | 69.05 | 67.814 | 34 | 0 | 0 | 0 | 120.9 | 114.67 |
Source | TrainLM | TrainSCG | TrainBR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tra. | Tes. | Val. | All | Tra. | Tes. | Val. | All | Tra. | Tes. | Val. | All | |
RMSE | 3.954 | 7.218 | 15.305 | 4.962 | 10.138 | 13.759 | 19.996 | 19.996 | 4.857 | 8.369 | 28.056 | 5.345 |
MAE | 2.663 | 6.184 | 5.563 | 2.607 | 8.228 | 13.267 | 7.336 | 8.838 | 3.863 | 7.625 | 2.473 | 4.211 |
SSE | 375 | 260 | 201 | 837 | 2466 | 946 | 440 | 3853 | 566 | 350 | 55 | 971 |
No. | MR | WR | Tem (°C) | MOR (MPa) |
---|---|---|---|---|
1 | 1.68 | 20 | 160 | 91.203 |
2 | 1.68 | 25 | 160 | 99.358 |
3 | 1.68 | 30 | 160 | 107.51 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
8 | 1.68 | 55 | 160 | 126.64 |
9 | 1.68 | 60 | 160 | 127.57 |
No. | MR | WR | Tem (°C) | MOR (MPa) |
---|---|---|---|---|
1 | 1.68 | 20 | 140 | 91.203 |
2 | 1.71125 | 25 | 140 | 101.46 |
3 | 1.7425 | 30 | 140 | 111.71 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
82 | 1.68 | 20 | 140 | 90.12 |
83 | 1.71125 | 20 | 145 | 97.234 |
84 | 1.7425 | 20 | 150 | 104.26 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
243 | 1.93 | 60 | 180 | 134.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazerian, M.; Naderi, F.; Papadopoulos, A.N. Application of the Artificial Neural Network to Predict the Bending Strength of the Engineered Laminated Wood Produced Using the Hydrolyzed Soy Protein-Melamine Urea Formaldehyde Copolymer Adhesive. J. Compos. Sci. 2023, 7, 206. https://doi.org/10.3390/jcs7050206
Nazerian M, Naderi F, Papadopoulos AN. Application of the Artificial Neural Network to Predict the Bending Strength of the Engineered Laminated Wood Produced Using the Hydrolyzed Soy Protein-Melamine Urea Formaldehyde Copolymer Adhesive. Journal of Composites Science. 2023; 7(5):206. https://doi.org/10.3390/jcs7050206
Chicago/Turabian StyleNazerian, Morteza, Fatemeh Naderi, and Antonios N. Papadopoulos. 2023. "Application of the Artificial Neural Network to Predict the Bending Strength of the Engineered Laminated Wood Produced Using the Hydrolyzed Soy Protein-Melamine Urea Formaldehyde Copolymer Adhesive" Journal of Composites Science 7, no. 5: 206. https://doi.org/10.3390/jcs7050206