Previous Issue
Volume 9, March
 
 

Condens. Matter, Volume 9, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
7 pages, 2671 KiB  
Editorial
Alex’s Vision in Functional Quantum Matter
by Davor Pavuna
Condens. Matter 2024, 9(2), 23; https://doi.org/10.3390/condmat9020023 - 18 Apr 2024
Viewed by 226
Abstract
My ‘In Memoriam’ contribution is very personal, as it includes many human and professional insights that I received from Alex Müller himself [...] Full article
(This article belongs to the Special Issue Complexity in Quantum Materials: In Honor of Prof. K.A. Muller)
Show Figures

Figure 1

12 pages, 4765 KiB  
Article
Optimization of a BEGe Detector Setup for Testing Quantum Foundations in the Underground LNGS Laboratory
by Kristian Piscicchia, Alberto Clozza, Diana Laura Sirghi, Massimiliano Bazzi, Nicola Bortolotti, Mario Bragadireanu, Michael Cargnelli, Luca De Paolis, Raffaele Del Grande, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Simone Manti, Johann Marton, Marco Miliucci, Fabrizio Napolitano, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Florin Sirghi, Sandro Tomassini, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Condens. Matter 2024, 9(2), 22; https://doi.org/10.3390/condmat9020022 - 11 Apr 2024
Viewed by 345
Abstract
In this work, we report on tests performed with an experimental apparatus prototype based on a broad-energy germanium detector aimed at investigating topical, foundational issues in quantum mechanics: i.e., possible violations of the spin-statistics connection and models of dynamical wave function collapse. Our [...] Read more.
In this work, we report on tests performed with an experimental apparatus prototype based on a broad-energy germanium detector aimed at investigating topical, foundational issues in quantum mechanics: i.e., possible violations of the spin-statistics connection and models of dynamical wave function collapse. Our recent phenomenological analyses demonstrated the importance of pushing the research of new physics signal, predicted in these fields, to an energy range below 10 keV. We describe the development of the dedicated data acquisition system and of the pulse shape discrimination algorithm, which have already allowed us to get a factor two improvement in the lower energy threshold. Future plans are discussed to further improve the lower energy threshold to the level of a few keV. Full article
(This article belongs to the Special Issue High Precision X-ray Measurements 2023)
Show Figures

Figure 1

9 pages, 449 KiB  
Review
Superconductors without Symmetry Breaking
by Maria Cristina Diamantini
Condens. Matter 2024, 9(2), 21; https://doi.org/10.3390/condmat9020021 - 02 Apr 2024
Viewed by 621
Abstract
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs [...] Read more.
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs field involved. Superconductivity is destroyed by the proliferation of vortices and not by the breaking of Cooper pairs, which survive above the critical temperature. The hallmark of this superconductivity mechanism, in 3 spatial dimensions (3D), is the Vogel–Fulcher–Taman scaling of the resistance with temperature. Full article
(This article belongs to the Special Issue Superstripes Physics, 2nd Edition)
Show Figures

Figure 1

Previous Issue
Back to TopTop