Next Article in Journal
Mechanical and Electrical Properties of Elastomer Nanocomposites Based on Different Carbon Nanomaterials
Next Article in Special Issue
Piezoresistive Response of Integrated CNT Yarns under Compression and Tension: The Effect of Lateral Constraint
Previous Article in Journal
An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors
Previous Article in Special Issue
High-Bandwidth and Sensitive Air Flow Sensing Based on Resonance Properties of CNT-on-Fiber Hairs
Article Menu

Export Article

Open AccessFeature PaperReview
C 2017, 3(1), 9; doi:10.3390/c3010009

Biosensors Based on Lipid Modified Graphene Microelectrodes

1
Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Dept 1, Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., GR 15780, Athens, Greece
2
Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, Piraeus GR 18534, Greece
3
Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis-Kouponia, GR 15771 Athens, Greece
*
Author to whom correspondence should be addressed.
Academic Editor: Jandro L. Abot
Received: 6 November 2016 / Revised: 20 February 2017 / Accepted: 13 March 2017 / Published: 16 March 2017
(This article belongs to the Special Issue Carbon-Based Sensors)
View Full-Text   |   Download PDF [1988 KB, uploaded 16 March 2017]   |  

Abstract

Graphene is one of the new materials which has shown a large impact on the electronic industry due to its versatile properties, such as high specific surface area, high electrical conductivity, chemical stability, and large spectrum of electrochemical properties. The graphene material-based electronic industry has provided flexible devices which are inexpensive, simple and low power-consuming sensor tools, therefore opening an outstanding new door in the field of portable electronic devices. All these attractive advantages of graphene give a platform for the development of a new generation of devices in both food and environmental applications. Lipid-based sensors have proven to be a good route to the construction of novel devices with improved characteristics, such as fast response times, increased sensitivity and selectivity, and the possibility of miniaturization for the construction of portable biosensors. Therefore, the incorporation of a lipid substrate on graphene electrodes has provided a route to the construction of a highly sensitive and selective class of biosensors with fast response times and portability of field applications for the rapid detection of toxicants in the environment and food products. View Full-Text
Keywords: biosensors; electroanalysis; graphene microelectrodes; lipid films; food analysis; environmental monitoring biosensors; electroanalysis; graphene microelectrodes; lipid films; food analysis; environmental monitoring
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Nikoleli, G.-P.; Siontorou, C.G.; Nikolelis, D.P.; Bratakou, S.; Karapetis, S.; Tzamtzis, N. Biosensors Based on Lipid Modified Graphene Microelectrodes. C 2017, 3, 9.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
C EISSN 2311-5629 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top