Next Article in Journal
The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus
Next Article in Special Issue
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells
Previous Article in Journal
Cryptococcus–Epithelial Interactions
Article Menu

Export Article

Open AccessArticle
J. Fungi 2017, 3(4), 54; doi:10.3390/jof3040054

A Novel Assay Reveals a Maturation Process during Ascospore Wall Formation

Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Received: 12 September 2017 / Revised: 26 September 2017 / Accepted: 29 September 2017 / Published: 2 October 2017
(This article belongs to the Special Issue Fungal Cell Wall)
View Full-Text   |   Download PDF [1661 KB, uploaded 2 October 2017]   |  

Abstract

The ascospore wall of the budding yeast Saccharomyces cerevisiae consists of inner layers of similar composition to the vegetative cell wall and outer layers made of spore-specific components that confer increased stress resistance on the spore. The primary constituents of the outer spore wall are chitosan, dityrosine, and a third component termed Chi that has been identified by spectrometry but whose chemical structure is not known. The lipophilic dye monodansylpentane readily stains lipid droplets inside of newly formed ascospores but, over the course of several days, the spores become impermeable to the dye. The generation of this permeability barrier requires the chitosan layer, but not dityrosine layer, of the spore wall. Screening of a set of mutants with different outer spore wall defects reveals that impermeability to the dye requires not just the presence of chitosan, but another factor as well, possibly Chi, and suggests that the OSW2 gene product is required for synthesis of this factor. Testing of mutants that block synthesis of specific aromatic amino acids indicates that de novo synthesis of tyrosine contributes not only to formation of the dityrosine layer but to impermeability of the wall as well, suggesting a second role for aromatic amino acids in spore wall synthesis. View Full-Text
Keywords: ascospore; spore wall; dityrosine; chitosan; tyrosine; sporulation ascospore; spore wall; dityrosine; chitosan; tyrosine; sporulation
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhang, K.; Needleman, L.; Zhou, S.; Neiman, A.M. A Novel Assay Reveals a Maturation Process during Ascospore Wall Formation. J. Fungi 2017, 3, 54.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Fungi EISSN 2309-608X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top