Next Article in Journal
Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards
Previous Article in Journal
Small Prizes Increased Plain Milk and Vegetable Selection by Elementary School Children without Adversely Affecting Total Milk Purchase
Article Menu

Export Article

Open AccessArticle
Beverages 2017, 3(1), 15; doi:10.3390/beverages3010015

Ricotta Cheese Whey-Fruit-Based Beverages: Pasteurization Effects on Antioxidant Composition and Color

Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Unità di ricerca per i processi dell’industria agroalimentare (CREA-IAA), via Venezian 26, I-20133 Milano, Italy
*
Author to whom correspondence should be addressed.
Academic Editor: Marta Henriques
Received: 18 October 2016 / Revised: 9 February 2017 / Accepted: 13 February 2017 / Published: 20 February 2017
(This article belongs to the Special Issue Dairy Beverages: New Trends and Concepts)
View Full-Text   |   Download PDF [2053 KB, uploaded 20 February 2017]   |  

Abstract

In order to minimize the precipitate formation upon pasteurization for whey-fruit juice-based beverages, a novel type of functional beverage was prepared, in which whey was replaced with Ricotta-cheese whey (RCW). Aiming at evaluating the influence of fruit juice type (yellow: apple, pear; red: blueberry, strawberry) and pasteurization conditions on color and antioxidants, four fruit-RCW-based beverages (juice/RCW ratio: 80/20, 14% soluble solids content) were prepared and divided into two lots, and each lot was pasteurized according to different times/temperatures. After pasteurization, no formation of precipitate was observed in the bottles, even if some turbidity, ranging from 25 NTU (pear-RCW) to 190 NTU (blueberry-RCW), was observed. The blending of juices with RCW caused color darkening in apple, pear, and strawberry blends, and brightening in the blueberry one. The pasteurization conditions had a greater impact on the color changes of ‘yellow’ beverages than those of the ‘red’ ones. With a lethal rate F 100 10 = 14 , there was a greater decrease in the total phenolic content (TPC) in blueberry-, strawberry-, and apple-RCW beverages, and a greater decrease in the monomeric anthocyanin pigment (MAP) and a smaller increase in the percent of polymeric color, in the blueberry-RCW beverage. Results on the antioxidant activity suggested that the Maillard reaction products formed in response to thermal treatment and/or the formation of anthocyanin polymers, likely compensate for the loss of antioxidant activity due to TPC and MAP degradations. View Full-Text
Keywords: functional beverages; heat treatment; total phenolic compounds; monomeric anthocyanin pigments; percent polymeric color; antioxidant activity functional beverages; heat treatment; total phenolic compounds; monomeric anthocyanin pigments; percent polymeric color; antioxidant activity
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Rizzolo, A.; Cortellino, G. Ricotta Cheese Whey-Fruit-Based Beverages: Pasteurization Effects on Antioxidant Composition and Color. Beverages 2017, 3, 15.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Beverages EISSN 2306-5710 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top