Next Article in Journal / Special Issue
Mapping Molecular Function to Biological Nanostructure: Combining Structured Illumination Microscopy with Fluorescence Lifetime Imaging (SIM + FLIM)
Previous Article in Journal / Special Issue
Analytical Model of the Optical Vortex Scanning Microscope with a Simple Phase Object
Article Menu

Export Article

Open AccessArticle
Photonics 2017, 4(3), 39; doi:10.3390/photonics4030039

Phase Mask-Based Multimodal Superresolution Microscopy

Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MD 20899, USA
*
Author to whom correspondence should be addressed.
Received: 2 May 2017 / Revised: 22 June 2017 / Accepted: 30 June 2017 / Published: 6 July 2017
(This article belongs to the Special Issue Superresolution Optical Microscopy)
View Full-Text   |   Download PDF [1127 KB, uploaded 11 July 2017]   |  

Abstract

We demonstrate a multimodal superresolution microscopy technique based on a phase masked excitation beam in combination with spatially filtered detection. The theoretical foundation for calculating the focus from a non-paraxial beam with an arbitrary azimuthally symmetric phase mask is presented for linear and two-photon excitation processes as well as the theoretical resolution limitations. Experimentally this technique is demonstrated using two-photon luminescence from 80 nm gold particle as well as two-photon fluorescence lifetime imaging of fluorescent polystyrene beads. Finally to illustrate the versatility of this technique we acquire two-photon fluorescence lifetime, two-photon luminescence, and second harmonic images of a mixture of fluorescent molecules and 80 nm gold particles with <120 nm resolution ( λ /7). Since this approach exclusively relies on engineering the excitation and collection volumes, it is suitable for a wide range of scanning-based microscopies. View Full-Text
Keywords: microscopy; superresolution; nonlinear microscopy microscopy; superresolution; nonlinear microscopy
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Beams, R.; Woodcock, J.W.; Gilman, J.W.; Stranick, S.J. Phase Mask-Based Multimodal Superresolution Microscopy. Photonics 2017, 4, 39.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Photonics EISSN 2304-6732 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top